These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28873398)

  • 21. How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech.
    Saltré F; Duputié A; Gaucherel C; Chuine I
    Glob Chang Biol; 2015 Feb; 21(2):897-910. PubMed ID: 25330385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substantial declines in urban tree habitat predicted under climate change.
    Burley H; Beaumont LJ; Ossola A; Baumgartner JB; Gallagher R; Laffan S; Esperon-Rodriguez M; Manea A; Leishman MR
    Sci Total Environ; 2019 Oct; 685():451-462. PubMed ID: 31176230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.
    Littlefield CE; McRae BH; Michalak JL; Lawler JJ; Carroll C
    Conserv Biol; 2017 Dec; 31(6):1397-1408. PubMed ID: 28339121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Projected changes in distributions of Australian tropical savanna birds under climate change using three dispersal scenarios.
    Reside AE; Vanderwal J; Kutt AS
    Ecol Evol; 2012 Apr; 2(4):705-18. PubMed ID: 22837819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prioritizing conservation efforts based on future habitat availability and accessibility under climate change.
    Liang J; Wang W; Cai Q; Li X; Zhu Z; Zhai Y; Li X; Gao X; Yi Y
    Conserv Biol; 2024 Jun; 38(3):e14204. PubMed ID: 37855159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inbreeding avoidance in cunningham's skinks (Egernia cunninghami) in natural and fragmented habitat.
    Stow AJ; Sunnucks P
    Mol Ecol; 2004 Feb; 13(2):443-7. PubMed ID: 14717898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Projected loss of a salamander diversity hotspot as a consequence of projected global climate change.
    Milanovich JR; Peterman WE; Nibbelink NP; Maerz JC
    PLoS One; 2010 Aug; 5(8):e12189. PubMed ID: 20808442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unveiling the conservation biogeography of a data-deficient endangered bird species under climate change.
    Hu J; Liu Y
    PLoS One; 2014; 9(1):e84529. PubMed ID: 24404169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.
    Fattebert J; Robinson HS; Balme G; Slotow R; Hunter L
    Ecol Appl; 2015 Oct; 25(7):1911-21. PubMed ID: 26591456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implications of Climate Change for Bird Conservation in the Southwestern U.S. under Three Alternative Futures.
    Friggens MM; Finch DM
    PLoS One; 2015; 10(12):e0144089. PubMed ID: 26700871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Achieving climate connectivity in a fragmented landscape.
    McGuire JL; Lawler JJ; McRae BH; Nuñez TA; Theobald DM
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7195-200. PubMed ID: 27298349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution and extent of suitable habitats of Ruspoli's Turaco (Tauraco ruspolii) and White-cheeked Turaco (Tauraco leucotis) under a changing climate in Ethiopia.
    Aligaz MA; Kufa CA; Ahmed AS; Argaw HT; Tamrat M; Yihune M; Atickem A; Bekele A; Bogale BA
    BMC Ecol Evol; 2024 Jun; 24(1):83. PubMed ID: 38902600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dispersal and connectivity in increasingly extreme climatic conditions.
    Hofmann DD; Behr DM; McNutt JW; Ozgul A; Cozzi G
    Glob Chang Biol; 2024 May; 30(5):e17299. PubMed ID: 38700905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alpine glacial relict species losing out to climate change: The case of the fragmented mountain hare population (Lepus timidus) in the Alps.
    Rehnus M; Bollmann K; Schmatz DR; Hackländer K; Braunisch V
    Glob Chang Biol; 2018 Jul; 24(7):3236-3253. PubMed ID: 29532601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Where and why are species' range shifts hampered by unsuitable landscapes?
    Hodgson JA; Randle Z; Shortall CR; Oliver TH
    Glob Chang Biol; 2022 Aug; 28(16):4765-4774. PubMed ID: 35590459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An assessment of the impact of climate change on the distribution of the grey-shanked douc Pygathrix cinerea using an ecological niche model.
    Vu TT; Tran DV; Tran HTP; Nguyen MD; Do TA; Ta NT; Cao HT; Pham NT; Phan DV
    Primates; 2020 Mar; 61(2):267-275. PubMed ID: 31560091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios.
    Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Habitat patches providing south-north connectivity are under-protected in a fragmented landscape.
    Travers TJP; Alison J; Taylor SD; Crick HQP; Hodgson JA
    Proc Biol Sci; 2021 Aug; 288(1957):20211010. PubMed ID: 34428962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Species-free species distribution models describe macroecological properties of protected area networks.
    Robinson JL; Fordyce JA
    PLoS One; 2017; 12(3):e0173443. PubMed ID: 28301488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conservation assessments in climate change scenarios: spatial perspectives for present and future in two
    Minoli I; Avila LJ
    Zootaxa; 2017 Feb; 4237(1):zootaxa.4237.1.5. PubMed ID: 28264304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.