These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28873515)

  • 1. Characterization of myofibrils cold structural deformation degrees of frozen pork using hyperspectral imaging coupled with spectral angle mapping algorithm.
    Cheng W; Sun DW; Pu H; Wei Q
    Food Chem; 2018 Jan; 239():1001-1008. PubMed ID: 28873515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterospectral two-dimensional correlation analysis with near-infrared hyperspectral imaging for monitoring oxidative damage of pork myofibrils during frozen storage.
    Cheng W; Sun DW; Pu H; Wei Q
    Food Chem; 2018 May; 248():119-127. PubMed ID: 29329834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid detection of frozen pork quality without thawing by Vis-NIR hyperspectral imaging technique.
    Xie A; Sun DW; Xu Z; Zhu Z
    Talanta; 2015 Jul; 139():208-15. PubMed ID: 25882428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles.
    Ma J; Sun DW; Pu H
    Food Chem; 2016 Apr; 197(Pt A):848-54. PubMed ID: 26617026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive detection and visualization of protein oxidation degree of frozen-thawed pork using fluorescence hyperspectral imaging.
    Cheng J; Sun J; Yao K; Xu M; Zhou X
    Meat Sci; 2022 Dec; 194():108975. PubMed ID: 36126392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of TBARS distribution in frozen-thawed pork using NIR hyperspectral imaging.
    Wu X; Song X; Qiu Z; He Y
    Meat Sci; 2016 Mar; 113():92-6. PubMed ID: 26630204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis.
    Pu H; Sun DW; Ma J; Cheng JH
    Meat Sci; 2015 Jan; 99():81-8. PubMed ID: 25282703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared hyperspectral imaging for detection and visualization of offal adulteration in ground pork.
    Jiang H; Ru Y; Chen Q; Wang J; Xu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119307. PubMed ID: 33348095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative determination of total pigments in red meats using hyperspectral imaging and multivariate analysis.
    Xiong Z; Sun DW; Xie A; Pu H; Han Z; Luo M
    Food Chem; 2015 Jul; 178():339-45. PubMed ID: 25704721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging.
    Cheng J; Sun J; Yao K; Xu M; Dai C
    Meat Sci; 2023 Jul; 201():109196. PubMed ID: 37087873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online monitoring of red meat color using hyperspectral imaging.
    Kamruzzaman M; Makino Y; Oshita S
    Meat Sci; 2016 Jun; 116():110-7. PubMed ID: 26874594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical spoilage extent traceability of two kinds of processed pork meats using one multispectral system developed by hyperspectral imaging combined with effective variable selection methods.
    Cheng W; Sun DW; Pu H; Wei Q
    Food Chem; 2017 Apr; 221():1989-1996. PubMed ID: 27979190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parsimonious model development for real-time monitoring of moisture in red meat using hyperspectral imaging.
    Kamruzzaman M; Makino Y; Oshita S
    Food Chem; 2016 Apr; 196():1084-91. PubMed ID: 26593592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: feature selection.
    Shi T; Chen Y; Liu H; Wang J; Wu G
    Appl Spectrosc; 2014; 68(8):831-7. PubMed ID: 25061784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging.
    Barbin DF; ElMasry G; Sun DW; Allen P
    Anal Chim Acta; 2012 Mar; 719():30-42. PubMed ID: 22340528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of pork fat attributes using NIR Images of frozen and thawed pork.
    Huang H; Liu L; Ngadi MO
    Meat Sci; 2016 Sep; 119():51-61. PubMed ID: 27132204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Prediction the Soluble Solid Content in Sugarcanes by Using Near Infrared Hyperspectral Imaging System].
    Gao JF; Zhang C; Xie CQ; Zhu FL; Guo ZH; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Aug; 35(8):2154-8. PubMed ID: 26672284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Imaging of Heterogeneous Muscle Foods Using Near-Infrared Hyperspectral Imaging in Transmission Mode.
    Wold JP; Kermit M; Segtnan VH
    Appl Spectrosc; 2016 Jun; 70(6):953-61. PubMed ID: 27257302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on the Rapid Evaluation of Total Volatile Basic Nitrogen (TVB-N) of Mutton by Hyperspectral Imaging Technique].
    Zhu RG; Yao XD; Duan HW; Ma BX; Tang MX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):806-10. PubMed ID: 27400528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of hyperspectral imaging for rapid prediction of hydroxyproline content in chicken meat.
    Xiong Z; Sun DW; Xie A; Han Z; Wang L
    Food Chem; 2015 May; 175():417-22. PubMed ID: 25577100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.