These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 28873596)
1. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Hu K; Jin GJ; Mei WC; Li T; Tao YS Food Chem; 2018 Jan; 239():495-501. PubMed ID: 28873596 [TBL] [Abstract][Full Text] [Related]
2. Wine aroma response to different participation of selected Hanseniaspora uvarum in mixed fermentation with Saccharomyces cerevisiae. Hu K; Jin GJ; Xu YH; Tao YS Food Res Int; 2018 Jun; 108():119-127. PubMed ID: 29735040 [TBL] [Abstract][Full Text] [Related]
3. Enhancing wine ester biosynthesis in mixed Hanseniaspora uvarum/Saccharomyces cerevisiae fermentation by nitrogen nutrient addition. Hu K; Jin GJ; Xu YH; Xue SJ; Qiao SJ; Teng YX; Tao YS Food Res Int; 2019 Sep; 123():559-566. PubMed ID: 31285005 [TBL] [Abstract][Full Text] [Related]
4. Fine tuning of medium chain fatty acids levels increases fruity ester production during alcoholic fermentation. Kong CL; Ma N; Yin J; Zhao HY; Tao YS Food Chem; 2021 Jun; 346():128897. PubMed ID: 33406455 [TBL] [Abstract][Full Text] [Related]
5. Aroma modulation of Cabernet Gernischt dry red wine by optimal enzyme treatment strategy in winemaking. Sun WX; Hu K; Zhang JX; Zhu XL; Tao YS Food Chem; 2018 Apr; 245():1248-1256. PubMed ID: 29287349 [TBL] [Abstract][Full Text] [Related]
6. Assessment of chemical composition and sensorial properties of ciders fermented with different non-Saccharomyces yeasts in pure and mixed fermentations. Wei J; Zhang Y; Wang Y; Ju H; Niu C; Song Z; Yuan Y; Yue T Int J Food Microbiol; 2020 Apr; 318():108471. PubMed ID: 31841786 [TBL] [Abstract][Full Text] [Related]
7. Chemical composition, sensorial properties, and aroma-active compounds of ciders fermented with Hanseniaspora osmophila and Torulaspora quercuum in co- and sequential fermentations. Wei J; Zhang Y; Qiu Y; Guo H; Ju H; Wang Y; Yuan Y; Yue T Food Chem; 2020 Feb; 306():125623. PubMed ID: 31606633 [TBL] [Abstract][Full Text] [Related]
8. Adjustment of impact odorants in Hutai-8 rose wine by co-fermentation of Pichia fermentans and Saccharomyces cerevisiae. Li N; Wang L; Yin J; Ma N; Tao Y Food Res Int; 2022 Mar; 153():110959. PubMed ID: 35227481 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of aroma enhancement for "Ecolly" dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Wang XC; Li AH; Dizy M; Ullah N; Sun WX; Tao YS Food Chem; 2017 Aug; 228():550-559. PubMed ID: 28317762 [TBL] [Abstract][Full Text] [Related]
10. Effect of Huang M; Liu X; Li X; Sheng X; Li T; Tang W; Yu Z; Wang Y Molecules; 2022 Nov; 27(22):. PubMed ID: 36432199 [No Abstract] [Full Text] [Related]
11. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Medina K; Boido E; Fariña L; Gioia O; Gomez ME; Barquet M; Gaggero C; Dellacassa E; Carrau F Food Chem; 2013 Dec; 141(3):2513-21. PubMed ID: 23870989 [TBL] [Abstract][Full Text] [Related]
12. Use of a flor yeast strain for the second fermentation of sparkling wines: Effect of endogenous CO Martínez-García R; Roldán-Romero Y; Moreno J; Puig-Pujol A; Mauricio JC; García-Martínez T Food Chem; 2020 Mar; 308():125555. PubMed ID: 31655483 [TBL] [Abstract][Full Text] [Related]
13. Selection of aroma compounds for the differentiation of wines obtained by fermenting musts with starter cultures of commercial yeast strains. Vararu F; Moreno-García J; Zamfir CI; Cotea VV; Moreno J Food Chem; 2016 Apr; 197(Pt A):373-81. PubMed ID: 26616963 [TBL] [Abstract][Full Text] [Related]
14. Wine aroma modification by Zhang Z; Wang H; Xia H; Sun L; Zhang Q; Yang H; Zhang J Food Chem X; 2023 Dec; 20():100930. PubMed ID: 38144769 [No Abstract] [Full Text] [Related]
15. Influence of the dominance of must fermentation by Torulaspora delbrueckii on the malolactic fermentation and organoleptic quality of red table wine. Ramírez M; Velázquez R; Maqueda M; Zamora E; López-Piñeiro A; Hernández LM Int J Food Microbiol; 2016 Dec; 238():311-319. PubMed ID: 27718475 [TBL] [Abstract][Full Text] [Related]
16. Using Torulaspora delbrueckii killer yeasts in the elaboration of base wine and traditional sparkling wine. Velázquez R; Zamora E; Álvarez ML; Ramírez M Int J Food Microbiol; 2019 Jan; 289():134-144. PubMed ID: 30240984 [TBL] [Abstract][Full Text] [Related]
17. Saccharomyces cerevisiae and Hanseniaspora uvarum mixed starter cultures: Influence of microbial/physical interactions on wine characteristics. Pietrafesa A; Capece A; Pietrafesa R; Bely M; Romano P Yeast; 2020 Nov; 37(11):609-621. PubMed ID: 32567694 [TBL] [Abstract][Full Text] [Related]
18. Indigenous Yeast Interactions in Dual-Starter Fermentations May Improve the Varietal Expression of Moschofilero Wine. Nisiotou A; Mallouchos A; Tassou C; Banilas G Front Microbiol; 2019; 10():1712. PubMed ID: 31402907 [TBL] [Abstract][Full Text] [Related]
19. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. Renault P; Coulon J; de Revel G; Barbe JC; Bely M Int J Food Microbiol; 2015 Aug; 207():40-8. PubMed ID: 26001522 [TBL] [Abstract][Full Text] [Related]
20. Increased glycosidase activities improved the production of wine varietal odorants in mixed fermentation of P. fermentans and high antagonistic S. cerevisiae. Li N; Wang QQ; Xu YH; Li AH; Tao YS Food Chem; 2020 Dec; 332():127426. PubMed ID: 32619948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]