BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28873605)

  • 1. An analysis of the changes on intermediate products during the thermal processing of black garlic.
    Yuan H; Sun L; Chen M; Wang J
    Food Chem; 2018 Jan; 239():56-61. PubMed ID: 28873605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Comparison of the Contents of Sugar, Amadori, and Heyns Compounds in Fresh and Black Garlic.
    Yuan H; Sun L; Chen M; Wang J
    J Food Sci; 2016 Jul; 81(7):C1662-8. PubMed ID: 27300762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amadori products formation in emulsified systems.
    Troise AD; Berton-Carabin CC; Fogliano V
    Food Chem; 2016 May; 199():51-8. PubMed ID: 26775943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.
    Liang T; Wei F; Lu Y; Kodani Y; Nakada M; Miyakawa T; Tanokura M
    J Agric Food Chem; 2015 Jan; 63(2):683-91. PubMed ID: 25549134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I.
    Troise AD; Buonanno M; Fiore A; Monti SM; Fogliano V
    Food Chem; 2016 Dec; 212():722-9. PubMed ID: 27374589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.
    Kocadağlı T; Gökmen V
    Food Chem; 2016 Nov; 211():892-902. PubMed ID: 27283710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects and mechanism of free amino acids on browning in the processing of black garlic.
    Liu P; Lu X; Li N; Zheng Z; Zhao R; Tang X; Qiao X
    J Sci Food Agric; 2019 Aug; 99(10):4670-4676. PubMed ID: 30906992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-Furoylmethyl amino acids as indicators of Maillard reaction during the elaboration of black garlic.
    Ríos-Ríos KL; Vázquez-Barrios ME; Gaytán-Martínez M; Olano A; Montilla A; Villamiel M
    Food Chem; 2018 Feb; 240():1106-1112. PubMed ID: 28946230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous formation of 3-deoxy-d-threo-hexo-2-ulose and 3-deoxy-d-erythro-hexo-2-ulose during the degradation of d-glucose derived Amadori rearrangement products: Mechanistic considerations.
    Kaufmann M; Krüger S; Mügge C; Kroh LW
    Carbohydr Res; 2018 Mar; 458-459():44-51. PubMed ID: 29454872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid characterization of Maillard reaction products in heat-treated honey by nanoelectrospray ionization mass spectrometry.
    Qu L; Li Y; Wang Y; Wu D; Ning F; Nie Z; Luo L
    Food Chem; 2023 Sep; 419():136010. PubMed ID: 37015165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration of the Maillard reaction and achievement of product quality by high pressure pretreatment during black garlic processing.
    Li F; Cao J; Liu Q; Hu X; Liao X; Zhang Y
    Food Chem; 2020 Jul; 318():126517. PubMed ID: 32146305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of temperature on the quality of black garlic.
    Zhang X; Li N; Lu X; Liu P; Qiao X
    J Sci Food Agric; 2016 May; 96(7):2366-72. PubMed ID: 26212875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cooking methods on nutritional quality and volatile compounds of Chinese chestnut (Castanea mollissima Blume).
    Li Q; Shi X; Zhao Q; Cui Y; Ouyang J; Xu F
    Food Chem; 2016 Jun; 201():80-6. PubMed ID: 26868551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the tyramine/glucose Maillard reaction: Variables, characterization, cytotoxicity and preliminary application.
    Jiang W; Chen Y; He X; Hu S; Li S; Liu Y
    Food Chem; 2018 Jan; 239():377-384. PubMed ID: 28873582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of phospholipids and reheating treatment on volatile compounds in phospholipid-xylose-cysteine reaction systems.
    Zhang Z; Zang M; Zhang K; Wang S; Li D; Li X
    Food Res Int; 2021 Jan; 139():109918. PubMed ID: 33509485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved controlled flavor formation during heat-treatment with a stable Maillard reaction intermediate derived from xylose-phenylalanine.
    Cui H; Yu J; Xia S; Duhoranimana E; Huang Q; Zhang X
    Food Chem; 2019 Jan; 271():47-53. PubMed ID: 30236705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-reactivity relationship of Amadori rearrangement products compared to related ketoses.
    Kaufmann M; Meissner PM; Pelke D; Mügge C; Kroh LW
    Carbohydr Res; 2016 Jun; 428():87-99. PubMed ID: 27152632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of peptide-bound Heyns compounds.
    Krause R; Schlegel K; Schwarzer E; Henle T
    J Agric Food Chem; 2008 Apr; 56(7):2522-7. PubMed ID: 18318498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation kinetics of Maillard reaction intermediates from glycine-ribose system and improving Amadori rearrangement product through controlled thermal reaction and vacuum dehydration.
    Zhan H; Tang W; Cui H; Hayat K; Hussain S; Tahir MU; Zhang S; Zhang X; Ho CT
    Food Chem; 2020 May; 311():125877. PubMed ID: 31780222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allium sativum L. (Garlic) bulb enlargement as influenced by differential combinations of photoperiod and temperature.
    Atif MJ; Amin B; Ghani MI; Ali M; Liu X; Zhang Y; Cheng Z
    Food Chem; 2021 Feb; 338():127991. PubMed ID: 32950867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.