BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28873668)

  • 1. Modeling cereal starch hydrolysis during simultaneous saccharification and lactic acid fermentation; case of a sorghum-based fermented beverage, gowé.
    Mestres C; Bettencourt MJC; Loiseau G; Matignon B; Grabulos J; Achir N
    Food Res Int; 2017 Oct; 100(Pt 1):102-111. PubMed ID: 28873668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling mixed fermentation of gowé using selected Lactobacillus plantarum and Pichia kluyveri strains.
    Mestres C; Munanga BJC; Grabulos J; Loiseau G
    Food Microbiol; 2019 Dec; 84():103242. PubMed ID: 31421747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Cereal Beverage Fermented by Lactobacillus Helveticus and Saccharomyces Cerevisiae.
    Ai J; Li AL; Su BX; Meng XC
    J Food Sci; 2015 Jun; 80(6):M1259-65. PubMed ID: 25962443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactic acid bacteria and yeasts associated with gowé production from sorghum in Bénin.
    Vieira-Dalodé G; Jespersen L; Hounhouigan J; Moller PL; Nago CM; Jakobsen M
    J Appl Microbiol; 2007 Aug; 103(2):342-9. PubMed ID: 17650194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron and zinc bioaccessibility of fermented maize, sorghum and millets from five locations in Zimbabwe.
    Gabaza M; Shumoy H; Muchuweti M; Vandamme P; Raes K
    Food Res Int; 2018 Jan; 103():361-370. PubMed ID: 29389625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory evaluation and consumer acceptability of a beverage made from malted and fermented cereal: case of gowe from Benin.
    Adinsi L; Akissoé NH; Dalodé-Vieira G; Anihouvi VB; Fliedel G; Mestres C; Hounhouigan JD
    Food Sci Nutr; 2015 Jan; 3(1):1-9. PubMed ID: 25649142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. African cereal fermentations: A review on fermentation processes and microbial composition of non-alcoholic fermented cereal foods and beverages.
    Pswarayi F; Gänzle M
    Int J Food Microbiol; 2022 Oct; 378():109815. PubMed ID: 35763938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of hydrolases and probiotic Pediococcus acidilactici BaltBio01 strain for cereal by-products conversion to bioproduct for food/feed.
    Bartkiene E; Bartkevics V; Krungleviciute V; Juodeikiene G; Zadeike D; Baliukoniene V; Bakutis B; Zelvyte R; Santini A; Cizeikiene D
    Int J Food Sci Nutr; 2018 Mar; 69(2):165-175. PubMed ID: 28691595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of malting conditions on sorghum (Sorghum bicolor (L.) Moench) as a raw material for fermented beverages.
    Hassani A; Zarnkow M; Becker T
    Food Sci Technol Int; 2014 Sep; 20(6):453-63. PubMed ID: 23751551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of soaking glutinous sorghum grains on physicochemical properties of starch.
    Li T; Huang J; Yu J; Tian X; Zhang C; Pu H
    Int J Biol Macromol; 2024 May; 267(Pt 1):131522. PubMed ID: 38614175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of fermentation on the starch digestibility, resistant starch and some physicochemical properties of sorghum flour.
    Elkhalifa AE; Schiffler B; Bernhard R
    Nahrung; 2004 Apr; 48(2):91-4. PubMed ID: 15146963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pigmented sorghum polyphenols as potential inhibitors of starch digestibility: An in vitro study combining starch digestion and untargeted metabolomics.
    Rocchetti G; Giuberti G; Busconi M; Marocco A; Trevisan M; Lucini L
    Food Chem; 2020 May; 312():126077. PubMed ID: 31891885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Lactic Fermentation of Gowé Using Lactobacillus Starter Culture.
    de J C Munanga B; Loiseau G; Grabulos J; Mestres C
    Microorganisms; 2016 Dec; 4(4):. PubMed ID: 27916901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-cultural acceptance of a traditional yoghurt-like product made from fermented cereal.
    Akissoé NH; Sacca C; Declemy AL; Bechoff A; Anihouvi VB; Dalodé G; Pallet D; Fliedel G; Mestres C; Hounhouigan JD; Tomlins KI
    J Sci Food Agric; 2015 Jul; 95(9):1876-84. PubMed ID: 25171784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assaying Sorghum for Fuel Production.
    Payne C; Sluiter J; Wolfrum E
    Methods Mol Biol; 2019; 1931():257-267. PubMed ID: 30652296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of phytochemicals during malting and fermentation of type III tannin sorghum and impact on product biofunctionality.
    Kayodé AP; Mertz C; Guyot JP; Brat P; Mouquet-Rivier C
    J Agric Food Chem; 2013 Feb; 61(8):1935-42. PubMed ID: 23373471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of fermentation conditions on the quality and sensory properties of a probiotic cupuassu (Theobroma grandiflorum) beverage.
    Pereira ALF; Feitosa WSC; Abreu VKG; Lemos TO; Gomes WF; Narain N; Rodrigues S
    Food Res Int; 2017 Oct; 100(Pt 1):603-611. PubMed ID: 28873727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison between corn and grain sorghum fermentation rates, Distillers Dried Grains with Solubles composition, and lipid profiles.
    Johnston DJ; Moreau RA
    Bioresour Technol; 2017 Feb; 226():118-124. PubMed ID: 27992794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenolic acids in some cereal grains and their inhibitory effect on starch liquefaction and saccharification.
    Kandil A; Li J; Vasanthan T; Bressler DC
    J Agric Food Chem; 2012 Aug; 60(34):8444-9. PubMed ID: 22793673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic identification of lactic acid bacteria isolates and their effects on the fermentation quality of sweet sorghum (Sorghum bicolor) silage.
    Sifeeldein A; Wang S; Li J; Dong Z; Chen L; Kaka NA; Shao T
    J Appl Microbiol; 2019 Mar; 126(3):718-729. PubMed ID: 30288865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.