These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28873884)

  • 21. An analytical model of the demand for propulsion torque during manual wheelchair propelling.
    Kukla M; Wieczorek B; Warguła Ł; Berdychowski M
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):9-16. PubMed ID: 31267792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A computerized wheelchair ergometer. Results of a comparison study.
    Veeger HE; van der Woude LH; Rozendal RH
    Scand J Rehabil Med; 1992; 24(1):17-23. PubMed ID: 1604258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A physiological and biomechanical comparison of over-ground, treadmill and ergometer wheelchair propulsion.
    Mason B; Lenton J; Leicht C; Goosey-Tolfrey V
    J Sports Sci; 2014; 32(1):78-91. PubMed ID: 23879733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of wheels and tires on high-strength lightweight wheelchair propulsion cost using a robotic wheelchair tester.
    Misch J; Sprigle S
    Disabil Rehabil Assist Technol; 2023 Nov; 18(8):1393-1403. PubMed ID: 34958616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Torque and power outputs on skilled and unskilled users during manual wheelchair propulsion.
    Hwang S; Kim S; Kim Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4820-2. PubMed ID: 23367006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users.
    Gauthier C; Grangeon M; Ananos L; Brosseau R; Gagnon DH
    Ann Phys Rehabil Med; 2017 Sep; 60(5):281-288. PubMed ID: 28410868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Promoting Physical Activity Through a Manual Wheelchair Propulsion Intervention in Persons With Multiple Sclerosis.
    Rice IM; Rice LA; Motl RW
    Arch Phys Med Rehabil; 2015 Oct; 96(10):1850-8. PubMed ID: 26150167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of wheelchair rolling resistance with a handle bar push technique.
    van der Woude LH; Geurts C; Winkelman H; Veeger HE
    J Med Eng Technol; 2003; 27(6):249-58. PubMed ID: 14602516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of wheelchair resistive forces during straight and turning trajectories across different wheelchair configurations using free-wheeling coast-down test.
    Lin JT; Huang M; Sprigle S
    J Rehabil Res Dev; 2015; 52(7):763-74. PubMed ID: 26745011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of wheelchair drag resistance using a coasting deceleration technique.
    Hoffman MD; Millet GY; Hoch AZ; Candau RB
    Am J Phys Med Rehabil; 2003 Nov; 82(11):880-9; quiz 890-2. PubMed ID: 14566157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Scand J Rehabil Med; 1994 Mar; 26(1):37-48. PubMed ID: 8023084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of varying level terrain on wheelchair propulsion biomechanics.
    Hurd WJ; Morrow MM; Kaufman KR; An KN
    Am J Phys Med Rehabil; 2008 Dec; 87(12):984-91. PubMed ID: 18824889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unmatched speed perceptions between overground and treadmill manual wheelchair propulsion in long-term manual wheelchair users.
    Chénier F; Champagne A; Desroches G; Gagnon DH
    Gait Posture; 2018 Mar; 61():398-402. PubMed ID: 29462773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of holding a racket on propulsion technique of wheelchair tennis players.
    de Groot S; Bos F; Koopman J; Hoekstra AE; Vegter RJK
    Scand J Med Sci Sports; 2017 Sep; 27(9):918-924. PubMed ID: 27230534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical efficiency and user power requirement with a pushrim activated power assisted wheelchair.
    Arva J; Fitzgerald SG; Cooper RA; Boninger ML
    Med Eng Phys; 2001 Dec; 23(10):699-705. PubMed ID: 11801411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Tire Pressure to Physical Workload at Operating a Manual Wheelchair.
    Booka M; Yoneda I; Hashizume T; Lee H; Oku H; Fujisawa S
    Stud Health Technol Inform; 2015; 217():929-34. PubMed ID: 26294587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wheeling efficiency: the effects of varying tyre pressure with children and adolescents.
    Sawatzky BJ; Denison I
    Pediatr Rehabil; 2006; 9(2):122-6. PubMed ID: 16449070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanics and the wheelchair.
    McLaurin CA; Brubaker CE
    Prosthet Orthot Int; 1991 Apr; 15(1):24-37. PubMed ID: 1857638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.
    Learmonth YC; Kinnett-Hopkins D; Rice IM; Dysterheft JL; Motl RW
    Spinal Cord; 2016 Feb; 54(2):110-4. PubMed ID: 25777327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of caster wheel diameter and mass distribution on drag forces in manual wheelchairs.
    Zepeda R; Chan F; Sawatzky B
    J Rehabil Res Dev; 2016; 53(6):893-900. PubMed ID: 28475204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.