These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28873954)

  • 1. Bad Clade Deletion Supertrees: A Fast and Accurate Supertree Algorithm.
    Fleischauer M; Böcker S
    Mol Biol Evol; 2017 Sep; 34(9):2408-2421. PubMed ID: 28873954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BCD Beam Search: considering suboptimal partial solutions in Bad Clade Deletion supertrees.
    Fleischauer M; Böcker S
    PeerJ; 2018; 6():e4987. PubMed ID: 29900080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Split-based computation of majority-rule supertrees.
    Kupczok A
    BMC Evol Biol; 2011 Jul; 11():205. PubMed ID: 21752249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of flip supertree construction with a heuristic algorithm.
    Eulenstein O; Chen D; Burleigh JG; Fernández-Baca D; Sanderson MJ
    Syst Biol; 2004 Apr; 53(2):299-308. PubMed ID: 15205054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRL and SuperFine+MRL: new supertree methods.
    Nguyen N; Mirarab S; Warnow T
    Algorithms Mol Biol; 2012 Jan; 7(1):3. PubMed ID: 22280525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved heuristics for minimum-flip supertree construction.
    Chen D; Eulenstein O; Fernández-Baca D; Burleigh JG
    Evol Bioinform Online; 2007 Feb; 2():347-56. PubMed ID: 19455229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches.
    Baker WJ; Savolainen V; Asmussen-Lange CB; Chase MW; Dransfield J; Forest F; Harley MM; Uhl NW; Wilkinson M
    Syst Biol; 2009 Apr; 58(2):240-56. PubMed ID: 20525581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robinson-Foulds supertrees.
    Bansal MS; Burleigh JG; Eulenstein O; Fernández-Baca D
    Algorithms Mol Biol; 2010 Feb; 5():18. PubMed ID: 20181274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative performance of supertree algorithms in large data sets using the soapberry family (Sapindaceae) as a case study.
    Buerki S; Forest F; Salamin N; Alvarez N
    Syst Biol; 2011 Jan; 60(1):32-44. PubMed ID: 21068445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast local search for unrooted Robinson-Foulds supertrees.
    Chaudhary R; Burleigh JG; Fernández-Baca D
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1004-13. PubMed ID: 22431553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SuperFine: fast and accurate supertree estimation.
    Swenson MS; Suri R; Linder CR; Warnow T
    Syst Biol; 2012 Mar; 61(2):214-27. PubMed ID: 21934137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quartets MaxCut: a divide and conquer quartets algorithm.
    Snir S; Rao S
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):704-18. PubMed ID: 21030737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel versus unsupported clades: assessing the qualitative support for clades in MRP supertrees.
    Bininda-Emonds OR
    Syst Biol; 2003 Dec; 52(6):839-48. PubMed ID: 14668120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triplet supertree heuristics for the tree of life.
    Lin HT; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S8. PubMed ID: 19208181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simulation study comparing supertree and combined analysis methods using SMIDGen.
    Swenson MS; Barbançon F; Warnow T; Linder CR
    Algorithms Mol Biol; 2010 Jan; 5():8. PubMed ID: 20047664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collecting reliable clades using the Greedy Strict Consensus Merger.
    Fleischauer M; Böcker S
    PeerJ; 2016; 4():e2172. PubMed ID: 27375971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Robinson-Foulds supertrees in divide-and-conquer phylogeny estimation.
    Yu X; Le T; Christensen SA; Molloy EK; Warnow T
    Algorithms Mol Biol; 2021 Jun; 16(1):12. PubMed ID: 34183037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COSPEDTree: COuplet Supertree by Equivalence Partitioning of Taxa Set and DAG Formation.
    Bhattacharyya S; Mukherjee J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):590-603. PubMed ID: 26357270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polynomial supertree methods revisited.
    Brinkmeyer M; Griebel T; Böcker S
    Adv Bioinformatics; 2011; 2011():524182. PubMed ID: 22229028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast computation of supertrees for compatible phylogenies with nested taxa.
    Berry V; Semple C
    Syst Biol; 2006 Apr; 55(2):270-88. PubMed ID: 16611599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.