These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28873961)

  • 1. Transcriptome analysis of the response of Burmese python to digestion.
    Duan J; Sanggaard KW; Schauser L; Lauridsen SE; Enghild JJ; Schierup MH; Wang T
    Gigascience; 2017 Aug; 6(8):1-18. PubMed ID: 28873961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selected regulation of gastrointestinal acid-base secretion and tissue metabolism for the diamondback water snake and Burmese python.
    Secor SM; Taylor JR; Grosell M
    J Exp Biol; 2012 Jan; 215(Pt 1):185-96. PubMed ID: 22162867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gastric function and its contribution to the postprandial metabolic response of the Burmese python Python molurus.
    Secor SM
    J Exp Biol; 2003 May; 206(Pt 10):1621-30. PubMed ID: 12682094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation.
    Wall CE; Cozza S; Riquelme CA; McCombie WR; Heimiller JK; Marr TG; Leinwand LA
    Physiol Genomics; 2011 Jan; 43(2):69-76. PubMed ID: 21045117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus).
    Slay CE; Enok S; Hicks JW; Wang T
    J Exp Biol; 2014 May; 217(Pt 10):1784-9. PubMed ID: 24311803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utility of the burmese Python as a model for studying plasticity of extreme physiological systems.
    Tan Y; Martin TG; Harrison BC; Leinwand LA
    J Muscle Res Cell Motil; 2023 Jun; 44(2):95-106. PubMed ID: 36316565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Burmese pythons exhibit a transient adaptation to nutrient overload that prevents liver damage.
    Magida JA; Tan Y; Wall CE; Harrison BC; Marr TG; Peter AK; Riquelme CA; Leinwand LA
    J Gen Physiol; 2022 Apr; 154(4):. PubMed ID: 35323838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prioritizing blood flow: cardiovascular performance in response to the competing demands of locomotion and digestion for the Burmese python, Python molurus.
    Secor SM; White SE
    J Exp Biol; 2010 Jan; 213(1):78-88. PubMed ID: 20008365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of meal size on postprandial responses in juvenile Burmese pythons (Python molurus).
    Secor SM; Diamond J
    Am J Physiol; 1997 Mar; 272(3 Pt 2):R902-12. PubMed ID: 9087654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digestive physiology of the Burmese python: broad regulation of integrated performance.
    Secor SM
    J Exp Biol; 2008 Dec; 211(Pt 24):3767-74. PubMed ID: 19043049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging volumetry for noninvasive measures of phenotypic flexibility during digestion in Burmese pythons.
    Hansen K; Pedersen PB; Pedersen M; Wang T
    Physiol Biochem Zool; 2013; 86(1):149-58. PubMed ID: 23303329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of gastric digestion and ingestion of amino acids on the postprandial rise in oxygen consumption, heart rate and growth of visceral organs in pythons.
    Enok S; Simonsen LS; Wang T
    Comp Biochem Physiol A Mol Integr Physiol; 2013 May; 165(1):46-53. PubMed ID: 23384684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regression of postprandial cardiac hypertrophy in burmese pythons is mediated by FoxO1.
    Martin TG; Hunt DR; Langer SJ; Tan Y; Ebmeier CC; Leinwand LA
    Proc Natl Acad Sci U S A; 2024 Oct; 121(41):e2408719121. PubMed ID: 39352930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiology: postprandial cardiac hypertrophy in pythons.
    Andersen JB; Rourke BC; Caiozzo VJ; Bennett AF; Hicks JW
    Nature; 2005 Mar; 434(7029):37-8. PubMed ID: 15744290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding.
    Andrew AL; Card DC; Ruggiero RP; Schield DR; Adams RH; Pollock DD; Secor SM; Castoe TA
    Physiol Genomics; 2015 May; 47(5):147-57. PubMed ID: 25670730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Food composition influences metabolism, heart rate and organ growth during digestion in Python regius.
    Henriksen PS; Enok S; Overgaard J; Wang T
    Comp Biochem Physiol A Mol Integr Physiol; 2015 May; 183():36-44. PubMed ID: 25553896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matched regulation of gastrointestinal performance in the Burmese python, Python molurus.
    Cox CL; Secor SM
    J Exp Biol; 2008 Apr; 211(Pt 7):1131-40. PubMed ID: 18344488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pancreas does not contribute to the non-adrenergic-non-cholinergic stimulation of heart rate in digesting pythons.
    Guagnoni IN; Last KB; Rindom E; Wang T
    Comp Biochem Physiol A Mol Integr Physiol; 2024 May; 291():111608. PubMed ID: 38373589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-organ transcriptome resource for the Burmese Python (Python molurus bivittatus).
    Castoe TA; Fox SE; Jason de Koning A; Poole AW; Daza JM; Smith EN; Mockler TC; Secor SM; Pollock DD
    BMC Res Notes; 2011 Aug; 4():310. PubMed ID: 21867488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humoral regulation of heart rate during digestion in pythons (Python molurus and Python regius).
    Enok S; Simonsen LS; Pedersen SV; Wang T; Skovgaard N
    Am J Physiol Regul Integr Comp Physiol; 2012 May; 302(10):R1176-83. PubMed ID: 22422667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.