These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28874167)

  • 21. Winter is coming: Pathogen emergence in seasonal environments.
    Carmona P; Gandon S
    PLoS Comput Biol; 2020 Jul; 16(7):e1007954. PubMed ID: 32628658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epicasting: An Ensemble Wavelet Neural Network for forecasting epidemics.
    Panja M; Chakraborty T; Kumar U; Liu N
    Neural Netw; 2023 Aug; 165():185-212. PubMed ID: 37307664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the trends in the incidence of infectious diseases using the syndromic surveillance system, early warning and response unit, Mongolia, from 2009 to 2017: a retrospective descriptive multi-year analytical study.
    Davgasuren B; Nyam S; Altangerel T; Ishdorj O; Amarjargal A; Choi JY
    BMC Infect Dis; 2019 Aug; 19(1):705. PubMed ID: 31399064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disease Emergence in Multi-Patch Stochastic Epidemic Models with Demographic and Seasonal Variability.
    Nipa KF; Allen LJS
    Bull Math Biol; 2020 Nov; 82(12):152. PubMed ID: 33231753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early-warning signals of critical transition: Effect of extrinsic noise.
    Qin S; Tang C
    Phys Rev E; 2018 Mar; 97(3-1):032406. PubMed ID: 29776126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attack rates of seasonal epidemics.
    Katriel G; Stone L
    Math Biosci; 2012 Jan; 235(1):56-65. PubMed ID: 22094376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detecting and distinguishing tipping points using spectral early warning signals.
    Bury TM; Bauch CT; Anand M
    J R Soc Interface; 2020 Sep; 17(170):20200482. PubMed ID: 32993435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rate of forcing and the forecastability of critical transitions.
    Clements CF; Ozgul A
    Ecol Evol; 2016 Nov; 6(21):7787-7793. PubMed ID: 30128129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards seasonal forecasting of malaria in India.
    Lauderdale JM; Caminade C; Heath AE; Jones AE; MacLeod DA; Gouda KC; Murty US; Goswami P; Mutheneni SR; Morse AP
    Malar J; 2014 Aug; 13():310. PubMed ID: 25108445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pathogen seasonality and links with weather in England and Wales: a big data time series analysis.
    Cherrie MPC; Nichols G; Iacono GL; Sarran C; Hajat S; Fleming LE
    BMC Public Health; 2018 Aug; 18(1):1067. PubMed ID: 30153803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seasonal infectious disease epidemiology.
    Grassly NC; Fraser C
    Proc Biol Sci; 2006 Oct; 273(1600):2541-50. PubMed ID: 16959647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regular biennial cycles in epidemics caused by parametric resonance.
    Chen S; Epureanu B
    J Theor Biol; 2017 Feb; 415():137-144. PubMed ID: 28007555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of rate of change of parameter on early warning signals for critical transitions.
    Pavithran I; Sujith RI
    Chaos; 2021 Jan; 31(1):013116. PubMed ID: 33754769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forecasting disease risk for increased epidemic preparedness in public health.
    Myers MF; Rogers DJ; Cox J; Flahault A; Hay SI
    Adv Parasitol; 2000; 47():309-30. PubMed ID: 10997211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stochastic effects in a seasonally forced epidemic model.
    Rozhnova G; Nunes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041906. PubMed ID: 21230312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of seasonal strength and abruptness on predator-prey dynamics.
    Sauve AMC; Taylor RA; Barraquand F
    J Theor Biol; 2020 Apr; 491():110175. PubMed ID: 32017869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States.
    Reich NG; Brooks LC; Fox SJ; Kandula S; McGowan CJ; Moore E; Osthus D; Ray EL; Tushar A; Yamana TK; Biggerstaff M; Johansson MA; Rosenfeld R; Shaman J
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3146-3154. PubMed ID: 30647115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interior-point methods for estimating seasonal parameters in discrete-time infectious disease models.
    Word DP; Young JK; Cummings DA; Iamsirithaworn S; Laird CD
    PLoS One; 2013; 8(10):e74208. PubMed ID: 24167542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How to select a proper early warning threshold to detect infectious disease outbreaks based on the China infectious disease automated alert and response system (CIDARS).
    Wang R; Jiang Y; Michael E; Zhao G
    BMC Public Health; 2017 Jun; 17(1):570. PubMed ID: 28606078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Application and reflection of laboratory-based monitoring in early warning of infectious diseases].
    Zhou HJ; Cui ZG; Kan B
    Zhonghua Yu Fang Yi Xue Za Zhi; 2022 Apr; 56(4):401-404. PubMed ID: 35488535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.