These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 2887428)

  • 1. Phenylglyoxal modification of arginines in mammalian D-amino-acid oxidase.
    Vanoni MA; Pilone Simonetta M; Curti B; Negri A; Ronchi S
    Eur J Biochem; 1987 Sep; 167(2):261-7. PubMed ID: 2887428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction of phenylglyoxal with arginine groups in D-amino-acid oxidase from Rhodotorula gracilis.
    Gadda G; Negri A; Pilone MS
    J Biol Chem; 1994 Jul; 269(27):17809-14. PubMed ID: 7913089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine-specific modification of rabbit muscle phosphoglucose isomerase: differences in the inactivation by phenylglyoxal and butanedione and in the protection by substrate analogs.
    Pullan LM; Igarashi P; Noltmann EA
    Arch Biochem Biophys; 1983 Mar; 221(2):489-98. PubMed ID: 6838203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition and covalent modification of rape seed (Brassica napus) enoyl ACP reductase by phenylglyoxal.
    Cottingham IR; Austin AJ; Slabas AR
    Biochim Biophys Acta; 1989 May; 995(3):273-8. PubMed ID: 2706276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An essential arginine residue at the binding site of pig kidney 3,4-dihydroxyphenylalanine decarboxylase.
    Tancini B; Dominici P; Barra D; Voltattorni CB
    Arch Biochem Biophys; 1985 May; 238(2):565-73. PubMed ID: 3994391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs.
    Vernon CM; Hsu RY
    Arch Biochem Biophys; 1983 Aug; 225(1):296-305. PubMed ID: 6614923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of Escherichia coli 2-amino-3-ketobutyrate CoA ligase by phenylglyoxal and identification of an active-site arginine peptide.
    Mukherjee JJ; Dekker EE
    Arch Biochem Biophys; 1992 Nov; 299(1):147-53. PubMed ID: 1444446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on pig aldose reductase. Identification of an essential arginine in the primary and tertiary structure of the enzyme.
    Kubiseski TJ; Green NC; Borhani DW; Flynn TG
    J Biol Chem; 1994 Jan; 269(3):2183-8. PubMed ID: 8294474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of arginine residues of porcine muscle acylphosphatase.
    Tamura T; Mizuno Y; Shiokawa H
    Biochim Biophys Acta; 1986 Mar; 870(2):234-41. PubMed ID: 3006778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S; Mazumder A; Banerjee RK
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An essential arginine residue at the substrate-binding site of p-hydroxybenzoate hydroxylase.
    Shoun H; Beppu T; Arima K
    J Biol Chem; 1980 Oct; 255(19):9319-24. PubMed ID: 7410426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenylglyoxal modification of cardiac myosin S-1. Evidence for essential arginine residues at the active site.
    Morkin E; Flink IL; Banerjee SK
    J Biol Chem; 1979 Dec; 254(24):12647-52. PubMed ID: 159307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical modification of arginine residues of rat liver S-adenosylhomocysteinase.
    Takata Y; Fujioka M
    J Biol Chem; 1983 Jun; 258(12):7374-8. PubMed ID: 6863250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of myo-inositol monophosphatase by the arginine-specific reagent phenylglyoxal.
    Jackson RG; Gee NS; Ragan CI
    Biochem J; 1989 Dec; 264(2):419-22. PubMed ID: 2557838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification of a functional arginine residue of rat liver glycine methyltransferase.
    Konishi K; Fujioka M
    Biochemistry; 1987 Dec; 26(25):8496-502. PubMed ID: 3442671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anion transport in red blood cells and arginine-specific reagents. Interaction between the substrate-binding site and the binding site of arginine-specific reagents.
    Zaki L; Julien T
    Biochim Biophys Acta; 1985 Sep; 818(3):325-32. PubMed ID: 4041441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modification of an arginine residue in aldose reductase is enhanced by coenzyme binding: further evidence for conformational change during the reaction mechanism.
    Flynn TG; Kubiseski TJ
    Adv Enzyme Regul; 1993; 33():197-206. PubMed ID: 8356909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of carbonyl reductase from human brain by phenylglyoxal and 2,3-butanedione: a comparison with aldehyde reductase and aldose reductase.
    Bohren KM; von Wartburg JP; Wermuth B
    Biochim Biophys Acta; 1987 Nov; 916(2):185-92. PubMed ID: 3118957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme.
    Mukherji S; Bhaduri A
    J Biol Chem; 1986 Apr; 261(10):4519-24. PubMed ID: 3957906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.