BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 28874406)

  • 21. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase.
    Donnelly ML; Fimlaid KA; Shen A
    J Bacteriol; 2016 Jun; 198(11):1694-1707. PubMed ID: 27044622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection.
    Francis MB; Allen CA; Shrestha R; Sorg JA
    PLoS Pathog; 2013 May; 9(5):e1003356. PubMed ID: 23675301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity.
    Shimamoto S; Moriyama R; Sugimoto K; Miyata S; Makino S
    J Bacteriol; 2001 Jun; 183(12):3742-51. PubMed ID: 11371539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-spore germination analyses reveal that calcium released during
    Ribis JW; Melo L; Shrestha S; Giacalone D; Rodriguez EE; Shen A; Rohlfing A
    mSphere; 2023 Aug; 8(4):e0000523. PubMed ID: 37338207
    [No Abstract]   [Full Text] [Related]  

  • 25. Expression of germination-related enzymes, CspA, CspB, CspC, SleC, and SleM, of Clostridium perfringens S40 in the mother cell compartment of sporulating cells.
    Masayama A; Hamasaki K; Urakami K; Shimamoto S; Kato S; Makino S; Yoshimura T; Moriyama M; Moriyama R
    Genes Genet Syst; 2006 Aug; 81(4):227-34. PubMed ID: 17038794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological role of carbon dioxide in spore germination of Clostridium perfringens S40.
    Kato S; Masayama A; Yoshimura T; Hemmi H; Tsunoda H; Kihara T; Moriyama R
    J Biosci Bioeng; 2009 Dec; 108(6):477-83. PubMed ID: 19914579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate.
    Burns DA; Heap JT; Minton NP
    J Bacteriol; 2010 Feb; 192(3):657-64. PubMed ID: 19933358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Memory of Germinant Stimuli in Bacterial Spores.
    Wang S; Faeder JR; Setlow P; Li YQ
    mBio; 2015 Nov; 6(6):e01859-15. PubMed ID: 26604257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores.
    Banawas S; Korza G; Paredes-Sabja D; Li Y; Hao B; Setlow P; Sarker MR
    Food Microbiol; 2015 Sep; 50():83-7. PubMed ID: 25998819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clostridium difficile spore germination: an update.
    Burns DA; Heap JT; Minton NP
    Res Microbiol; 2010 Nov; 161(9):730-4. PubMed ID: 20863888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the cortex-lytic enzyme SleC from non-food-borne Clostridium perfringens on the germination properties of SleC-lacking spores of a food poisoning isolate.
    Paredes-Sabja D; Sarker MR
    Can J Microbiol; 2010 Nov; 56(11):952-8. PubMed ID: 21076486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Updates to Clostridium difficile Spore Germination.
    Kochan TJ; Foley MH; Shoshiev MS; Somers MJ; Carlson PE; Hanna PC
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29760211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Germination of spores of Clostridium difficile strains, including isolates from a hospital outbreak of Clostridium difficile-associated disease (CDAD).
    Paredes-Sabja D; Bond C; Carman RJ; Setlow P; Sarker MR
    Microbiology (Reading); 2008 Aug; 154(Pt 8):2241-2250. PubMed ID: 18667557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Terbium chloride influences Clostridium difficile spore germination.
    Shrestha R; Sorg JA
    Anaerobe; 2019 Aug; 58():80-88. PubMed ID: 30926439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of csp genes in NaCl, pH, and ethanol stress response and motility in Clostridium botulinum ATCC 3502.
    Derman Y; Söderholm H; Lindström M; Korkeala H
    Food Microbiol; 2015 Apr; 46():463-470. PubMed ID: 25475316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of germination inhibition of Clostridioides difficile spores by an aniline substituted cholate derivative (CaPA).
    Yip C; Phan JR; Abel-Santos E
    J Antibiot (Tokyo); 2023 Jun; 76(6):335-345. PubMed ID: 37016015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Germinants and Their Receptors in Clostridia.
    Bhattacharjee D; McAllister KN; Sorg JA
    J Bacteriol; 2016 Oct; 198(20):2767-75. PubMed ID: 27432831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic evidence for the presence of putative germination receptors in Clostridium difficile spores.
    Ramirez N; Liggins M; Abel-Santos E
    J Bacteriol; 2010 Aug; 192(16):4215-22. PubMed ID: 20562307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular basis of early stages of Clostridium difficile infection: germination and colonization.
    Sarker MR; Paredes-Sabja D
    Future Microbiol; 2012 Aug; 7(8):933-43. PubMed ID: 22913353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A
    Shrestha R; Lockless SW; Sorg JA
    J Biol Chem; 2017 Jun; 292(25):10735-10742. PubMed ID: 28487371
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.