BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28874753)

  • 1. Identifying DNase I hypersensitive sites as driver distal regulatory elements in breast cancer.
    D Antonio M; Weghorn D; D Antonio-Chronowska A; Coulet F; Olson KM; DeBoever C; Drees F; Arias A; Alakus H; Richardson AL; Schwab RB; Farley EK; Sunyaev SR; Frazer KA
    Nat Commun; 2017 Sep; 8(1):436. PubMed ID: 28874753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in Noncoding
    El Ghamrasni S; Quevedo R; Hawley J; Mazrooei P; Hanna Y; Cirlan I; Zhu H; Bruce JP; Oldfield LE; Yang SYC; Guilhamon P; Reimand J; Cescon DW; Done SJ; Lupien M; Pugh TJ
    Mol Cancer Res; 2022 Jan; 20(1):102-113. PubMed ID: 34556523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candidate Cancer Driver Mutations in Distal Regulatory Elements and Long-Range Chromatin Interaction Networks.
    Zhu H; Uusküla-Reimand L; Isaev K; Wadi L; Alizada A; Shuai S; Huang V; Aduluso-Nwaobasi D; Paczkowska M; Abd-Rabbo D; Ocsenas O; Liang M; Thompson JD; Li Y; Ruan L; Krassowski M; Dzneladze I; Simpson JT; Lupien M; Stein LD; Boutros PC; Wilson MD; Reimand J
    Mol Cell; 2020 Mar; 77(6):1307-1321.e10. PubMed ID: 31954095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale identification of Caenorhabditis elegans regulatory elements by tiling-array mapping of DNase I hypersensitive sites.
    Shi B; Guo X; Wu T; Sheng S; Wang J; Skogerbø G; Zhu X; Chen R
    BMC Genomics; 2009 Feb; 10():92. PubMed ID: 19243610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and chromatin structure analysis of the murine alpha1(I) collagen gene domain.
    Salimi-Tari P; Cheung M; Safar CA; Tracy JT; Tran I; Harbers K; Breindl M
    Gene; 1997 Oct; 198(1-2):61-72. PubMed ID: 9370265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide discovery of active regulatory elements and transcription factor footprints in
    Ho MCW; Quintero-Cadena P; Sternberg PW
    Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide mapping of DNase I hypersensitive sites in plants.
    Zhang W; Jiang J
    Methods Mol Biol; 2015; 1284():71-89. PubMed ID: 25757768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting cell-type-specific gene expression from regions of open chromatin.
    Natarajan A; Yardimci GG; Sheffield NC; Crawford GE; Ohler U
    Genome Res; 2012 Sep; 22(9):1711-22. PubMed ID: 22955983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic approaches for the discovery of CFTR regulatory elements.
    Ott CJ; Harris A
    Transcription; 2011; 2(1):23-7. PubMed ID: 21326906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals.
    Chen A; Chen D; Chen Y
    Gene; 2018 Aug; 667():83-94. PubMed ID: 29772251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use Chou's 5-steps rule to identify DNase I hypersensitive sites via dinucleotide property matrix and extreme gradient boosting.
    Zhang S; Xue T
    Mol Genet Genomics; 2020 Nov; 295(6):1431-1442. PubMed ID: 32685987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Index and biological spectrum of human DNase I hypersensitive sites.
    Meuleman W; Muratov A; Rynes E; Halow J; Lee K; Bates D; Diegel M; Dunn D; Neri F; Teodosiadis A; Reynolds A; Haugen E; Nelson J; Johnson A; Frerker M; Buckley M; Sandstrom R; Vierstra J; Kaul R; Stamatoyannopoulos J
    Nature; 2020 Aug; 584(7820):244-251. PubMed ID: 32728217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNase-seq to Study Chromatin Accessibility in Early
    Cho JS; Blitz IL; Cho KWY
    Cold Spring Harb Protoc; 2019 Apr; 2019(4):pdb.prot098335. PubMed ID: 30131367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays.
    Crawford GE; Davis S; Scacheri PC; Renaud G; Halawi MJ; Erdos MR; Green R; Meltzer PS; Wolfsberg TG; Collins FS
    Nat Methods; 2006 Jul; 3(7):503-9. PubMed ID: 16791207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning for DNase I hypersensitive sites identification.
    Lyu C; Wang L; Zhang J
    BMC Genomics; 2018 Dec; 19(Suppl 10):905. PubMed ID: 30598079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes.
    Lee CA; Abd-Rabbo D; Reimand J
    Genome Biol; 2021 May; 22(1):133. PubMed ID: 33941236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNase I SIM: A Simplified In-Nucleus Method for DNase I Hypersensitive Site Sequencing.
    Filichkin SA; Megraw M
    Methods Mol Biol; 2017; 1629():141-154. PubMed ID: 28623584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of DNase I-hypersensitive sites in the chromatin of the chicken C/EBPbeta gene reveals multiple cis-regulatory elements.
    Kintscher J; Miethe J; Klempnauer KH
    DNA Cell Biol; 2003 Mar; 22(3):201-8. PubMed ID: 12804118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou's 5-steps rule.
    Liang Y; Zhang S
    Biophys Chem; 2019 Oct; 253():106227. PubMed ID: 31325710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping regulatory elements by DNaseI hypersensitivity chip (DNase-Chip).
    Shibata Y; Crawford GE
    Methods Mol Biol; 2009; 556():177-90. PubMed ID: 19488879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.