These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 28874753)

  • 1. Identifying DNase I hypersensitive sites as driver distal regulatory elements in breast cancer.
    D Antonio M; Weghorn D; D Antonio-Chronowska A; Coulet F; Olson KM; DeBoever C; Drees F; Arias A; Alakus H; Richardson AL; Schwab RB; Farley EK; Sunyaev SR; Frazer KA
    Nat Commun; 2017 Sep; 8(1):436. PubMed ID: 28874753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in Noncoding
    El Ghamrasni S; Quevedo R; Hawley J; Mazrooei P; Hanna Y; Cirlan I; Zhu H; Bruce JP; Oldfield LE; Yang SYC; Guilhamon P; Reimand J; Cescon DW; Done SJ; Lupien M; Pugh TJ
    Mol Cancer Res; 2022 Jan; 20(1):102-113. PubMed ID: 34556523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candidate Cancer Driver Mutations in Distal Regulatory Elements and Long-Range Chromatin Interaction Networks.
    Zhu H; Uusküla-Reimand L; Isaev K; Wadi L; Alizada A; Shuai S; Huang V; Aduluso-Nwaobasi D; Paczkowska M; Abd-Rabbo D; Ocsenas O; Liang M; Thompson JD; Li Y; Ruan L; Krassowski M; Dzneladze I; Simpson JT; Lupien M; Stein LD; Boutros PC; Wilson MD; Reimand J
    Mol Cell; 2020 Mar; 77(6):1307-1321.e10. PubMed ID: 31954095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of DNase I hypersensitive sites in the human genome by multiple sequence descriptors.
    Jin YT; Tan Y; Gan ZH; Hao YD; Wang TY; Lin H; Tang B
    Methods; 2024 Sep; 229():125-132. PubMed ID: 38964595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale identification of Caenorhabditis elegans regulatory elements by tiling-array mapping of DNase I hypersensitive sites.
    Shi B; Guo X; Wu T; Sheng S; Wang J; Skogerbø G; Zhu X; Chen R
    BMC Genomics; 2009 Feb; 10():92. PubMed ID: 19243610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and chromatin structure analysis of the murine alpha1(I) collagen gene domain.
    Salimi-Tari P; Cheung M; Safar CA; Tracy JT; Tran I; Harbers K; Breindl M
    Gene; 1997 Oct; 198(1-2):61-72. PubMed ID: 9370265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide discovery of active regulatory elements and transcription factor footprints in
    Ho MCW; Quintero-Cadena P; Sternberg PW
    Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide mapping of DNase I hypersensitive sites in plants.
    Zhang W; Jiang J
    Methods Mol Biol; 2015; 1284():71-89. PubMed ID: 25757768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting cell-type-specific gene expression from regions of open chromatin.
    Natarajan A; Yardimci GG; Sheffield NC; Crawford GE; Ohler U
    Genome Res; 2012 Sep; 22(9):1711-22. PubMed ID: 22955983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic approaches for the discovery of CFTR regulatory elements.
    Ott CJ; Harris A
    Transcription; 2011; 2(1):23-7. PubMed ID: 21326906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals.
    Chen A; Chen D; Chen Y
    Gene; 2018 Aug; 667():83-94. PubMed ID: 29772251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use Chou's 5-steps rule to identify DNase I hypersensitive sites via dinucleotide property matrix and extreme gradient boosting.
    Zhang S; Xue T
    Mol Genet Genomics; 2020 Nov; 295(6):1431-1442. PubMed ID: 32685987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Index and biological spectrum of human DNase I hypersensitive sites.
    Meuleman W; Muratov A; Rynes E; Halow J; Lee K; Bates D; Diegel M; Dunn D; Neri F; Teodosiadis A; Reynolds A; Haugen E; Nelson J; Johnson A; Frerker M; Buckley M; Sandstrom R; Vierstra J; Kaul R; Stamatoyannopoulos J
    Nature; 2020 Aug; 584(7820):244-251. PubMed ID: 32728217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNase-seq to Study Chromatin Accessibility in Early
    Cho JS; Blitz IL; Cho KWY
    Cold Spring Harb Protoc; 2019 Apr; 2019(4):pdb.prot098335. PubMed ID: 30131367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays.
    Crawford GE; Davis S; Scacheri PC; Renaud G; Halawi MJ; Erdos MR; Green R; Meltzer PS; Wolfsberg TG; Collins FS
    Nat Methods; 2006 Jul; 3(7):503-9. PubMed ID: 16791207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for DNase I hypersensitive sites identification.
    Lyu C; Wang L; Zhang J
    BMC Genomics; 2018 Dec; 19(Suppl 10):905. PubMed ID: 30598079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes.
    Lee CA; Abd-Rabbo D; Reimand J
    Genome Biol; 2021 May; 22(1):133. PubMed ID: 33941236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNase I SIM: A Simplified In-Nucleus Method for DNase I Hypersensitive Site Sequencing.
    Filichkin SA; Megraw M
    Methods Mol Biol; 2017; 1629():141-154. PubMed ID: 28623584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of DNase I-hypersensitive sites in the chromatin of the chicken C/EBPbeta gene reveals multiple cis-regulatory elements.
    Kintscher J; Miethe J; Klempnauer KH
    DNA Cell Biol; 2003 Mar; 22(3):201-8. PubMed ID: 12804118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou's 5-steps rule.
    Liang Y; Zhang S
    Biophys Chem; 2019 Oct; 253():106227. PubMed ID: 31325710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.