BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28874831)

  • 1. Converting highly productive arable cropland in Europe to grassland: -a poor candidate for carbon sequestration.
    Gosling P; van der Gast C; Bending GD
    Sci Rep; 2017 Sep; 7(1):10493. PubMed ID: 28874831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.
    Wiesmeier M; Hübner R; Spörlein P; Geuß U; Hangen E; Reischl A; Schilling B; von Lützow M; Kögel-Knabner I
    Glob Chang Biol; 2014 Feb; 20(2):653-65. PubMed ID: 24038905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080.
    Smith JO; Smith P; Wattenbach M; Zaehle S; Hiederer R; Jones RJA; Montanarella L; Rounsevell MDA; Reginster I; Ewert F
    Glob Chang Biol; 2005 Dec; 11(12):2141-2152. PubMed ID: 34991279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil organic carbon stocks in European croplands and grasslands: How much have we lost in the past decade?
    De Rosa D; Ballabio C; Lugato E; Fasiolo M; Jones A; Panagos P
    Glob Chang Biol; 2024 Jan; 30(1):e16992. PubMed ID: 37902125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of temperate agricultural soils for carbon sequestration: A meta-analysis of land-use effects.
    Kämpf I; Hölzel N; Störrle M; Broll G; Kiehl K
    Sci Total Environ; 2016 Oct; 566-567():428-435. PubMed ID: 27232969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon sequestration in European croplands.
    Smith P; Falloon P
    SEB Exp Biol Ser; 2005; ():47-55. PubMed ID: 17633030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.
    Wiesmeier M; Munro S; Barthold F; Steffens M; Schad P; Kögel-Knabner I
    Glob Chang Biol; 2015 Oct; 21(10):3836-45. PubMed ID: 25916410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil organic carbon storage following conversion from cropland to grassland on sites differing in soil drainage and erosion history.
    Auerswald K; Fiener P
    Sci Total Environ; 2019 Apr; 661():481-491. PubMed ID: 30677692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Profile distribution and storage of soil organic carbon in a black soil as affected by land use types].
    Hao XX; Han XZ; Li LJ; Zou WX; Lu XC; Qiao YF
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):965-72. PubMed ID: 26259435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential to increase grassland soil C stocks by extending reseeding intervals is dependent on soil texture and depth.
    Elias DMO; Mason KE; Howell K; Mitschunas N; Hulmes L; Hulmes S; Lebron I; Pywell RF; McNamara NP
    J Environ Manage; 2023 May; 334():117465. PubMed ID: 36780812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Land-use conversion and changing soil carbon stocks in China's 'Grain-for-Green' Program: a synthesis.
    Deng L; Liu GB; Shangguan ZP
    Glob Chang Biol; 2014 Nov; 20(11):3544-56. PubMed ID: 24357470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal response of soil organic carbon after grassland-related land-use change.
    Li W; Ciais P; Guenet B; Peng S; Chang J; Chaplot V; Khudyaev S; Peregon A; Piao S; Wang Y; Yue C
    Glob Chang Biol; 2018 Oct; 24(10):4731-4746. PubMed ID: 29804310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory.
    Wertebach TM; Hölzel N; Kämpf I; Yurtaev A; Tupitsin S; Kiehl K; Kamp J; Kleinebecker T
    Glob Chang Biol; 2017 Sep; 23(9):3729-3741. PubMed ID: 28161907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full Inversion Tillage (FIT) during pasture renewal as a potential management strategy for enhanced carbon sequestration and storage in Irish grassland soils.
    Madigan AP; Zimmermann J; Krol DJ; Williams M; Jones MB
    Sci Total Environ; 2022 Jan; 805():150342. PubMed ID: 34818809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed global modelling of soil organic carbon in cropland, grassland and forest soils.
    Morais TG; Teixeira RFM; Domingos T
    PLoS One; 2019; 14(9):e0222604. PubMed ID: 31536571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices.
    Lugato E; Bampa F; Panagos P; Montanarella L; Jones A
    Glob Chang Biol; 2014 Nov; 20(11):3557-67. PubMed ID: 24789378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. After effects of historical grassland on soil organic carbon content and plant growth in croplands in southern Germany determined using satellite data.
    Schuster J; Hagn L; Mittermayer M; Hülsbergen KJ
    Sci Total Environ; 2024 Jul; ():174507. PubMed ID: 38971254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil organic carbon stock and distribution in cultivated land converted to grassland in a subtropical region of China.
    Zhang JH; Li FC; Wang Y; Xiong DH
    Environ Manage; 2014 Feb; 53(2):274-83. PubMed ID: 24122100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The climate change mitigation potential of annual grasslands under future climates.
    Mayer A; Silver WL
    Ecol Appl; 2022 Dec; 32(8):e2705. PubMed ID: 35808918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil macroaggregation drives sequestration of organic carbon and nitrogen with three-year grass-clover leys in arable rotations.
    Guest EJ; Palfreeman LJ; Holden J; Chapman PJ; Firbank LG; Lappage MG; Helgason T; Leake JR
    Sci Total Environ; 2022 Dec; 852():158358. PubMed ID: 36049686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.