BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 28874842)

  • 1. Investigation of Mitochondrial Metabolic Response to Doxorubicin in Prostate Cancer Cells: An NADH, FAD and Tryptophan FLIM Assay.
    Alam SR; Wallrabe H; Svindrych Z; Chaudhary AK; Christopher KG; Chandra D; Periasamy A
    Sci Rep; 2017 Sep; 7(1):10451. PubMed ID: 28874842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM.
    Wallrabe H; Svindrych Z; Alam SR; Siller KH; Wang T; Kashatus D; Hu S; Periasamy A
    Sci Rep; 2018 Jan; 8(1):79. PubMed ID: 29311591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation.
    Meleshina AV; Dudenkova VV; Bystrova AS; Kuznetsova DS; Shirmanova MV; Zagaynova EV
    Stem Cell Res Ther; 2017 Jan; 8(1):15. PubMed ID: 28129796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA-induced metabolic stress in reconstructed human skin.
    Ung TPL; Lim S; Solinas X; Mahou P; Chessel A; Marionnet C; Bornschlögl T; Beaurepaire E; Bernerd F; Pena AM; Stringari C
    Sci Rep; 2021 Nov; 11(1):22171. PubMed ID: 34772978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic cofactors NAD(P)H and FAD as potential indicators of cancer cell response to chemotherapy with paclitaxel.
    Lukina MM; Dudenkova VV; Ignatova NI; Druzhkova IN; Shimolina LE; Zagaynova EV; Shirmanova MV
    Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1693-1700. PubMed ID: 29719197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) accurately detects mitochondrial dysfunction in mouse oocytes.
    Sanchez T; Wang T; Pedro MV; Zhang M; Esencan E; Sakkas D; Needleman D; Seli E
    Fertil Steril; 2018 Dec; 110(7):1387-1397. PubMed ID: 30446247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioenergetic Alterations of Metabolic Redox Coenzymes as NADH, FAD and FMN by Means of Fluorescence Lifetime Imaging Techniques.
    Kalinina S; Freymueller C; Naskar N; von Einem B; Reess K; Sroka R; Rueck A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of mitochondrial dysfunction due to laser damage by 2-photon FLIM microscopy.
    Alam SR; Wallrabe H; Christopher KG; Siller KH; Periasamy A
    Sci Rep; 2022 Jul; 12(1):11938. PubMed ID: 35831321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity.
    Chacko JV; Eliceiri KW
    Cytometry A; 2019 Jan; 95(1):56-69. PubMed ID: 30296355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment.
    Shah AT; Diggins KE; Walsh AJ; Irish JM; Skala MC
    Neoplasia; 2015 Dec; 17(12):862-870. PubMed ID: 26696368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autofluorescence Imaging to Evaluate Cellular Metabolism.
    Theodossiou A; Hu L; Wang N; Nguyen U; Walsh AJ
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon fluorescence lifetime imaging of intrinsic NADH in three-dimensional tumor models.
    Cong A; Pimenta RML; Lee HB; Mereddy V; Holy J; Heikal AA
    Cytometry A; 2019 Jan; 95(1):80-92. PubMed ID: 30343512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios.
    Sun N; Xu HN; Luo Q; Li LZ
    Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism.
    Penjweini R; Roarke B; Alspaugh G; Gevorgyan A; Andreoni A; Pasut A; Sackett DL; Knutson JR
    Redox Biol; 2020 Jul; 34():101549. PubMed ID: 32403080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the Metabolic State in Cell-Model of Parkinson's Disease by Fluorescence Lifetime Imaging Microscopy.
    Chakraborty S; Nian FS; Tsai JW; Karmenyan A; Chiou A
    Sci Rep; 2016 Jan; 6():19145. PubMed ID: 26758390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of FLIM imaging, fitting and analysis for auto-fluorescent NAD(P)H and FAD in cells and tissues.
    Cao R; Wallrabe H; Siller K; Periasamy A
    Methods Appl Fluoresc; 2020 Feb; 8(2):024001. PubMed ID: 31972557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NAD(P)H autofluorescence lifetime imaging enables single cell analyses of cellular metabolism of osteoblasts in vitro and in vivo via two-photon microscopy.
    Schilling K; Brown E; Zhang X
    Bone; 2022 Jan; 154():116257. PubMed ID: 34781049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of HeLa cells revealed through autofluorescence lifetime upon infection with enterohemorrhagic Escherichia coli.
    Buryakina TY; Su PT; Syu W; Chang CA; Fan HF; Kao FJ
    J Biomed Opt; 2012 Oct; 17(10):101503. PubMed ID: 23223979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.