These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28875172)

  • 21. Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?
    Magnago LF; Magrach A; Laurance WF; Martins SV; Meira-Neto JA; Simonelli M; Edwards DP
    Glob Chang Biol; 2015 Sep; 21(9):3455-68. PubMed ID: 25832015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India.
    Jhariya MK
    Environ Monit Assess; 2017 Sep; 189(10):518. PubMed ID: 28948417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil.
    Pellegrini AF; Hoffmann WA; Franco AC
    Ecology; 2014 Feb; 95(2):342-52. PubMed ID: 24669728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Woody encroachment decreases diversity across North American grasslands and savannas.
    Ratajczak Z; Nippert JB; Collins SL
    Ecology; 2012 Apr; 93(4):697-703. PubMed ID: 22690619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aridity, not fire, favors nitrogen-fixing plants across tropical savanna and forest biomes.
    Pellegrini AFA; Staver AC; Hedin LO; Charles-Dominique T; Tourgee A
    Ecology; 2016 Sep; 97(9):2177-2183. PubMed ID: 27859089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The inverted forest: Aboveground and notably large belowground carbon stocks and their drivers in Brazilian savannas.
    Terra MCNS; Nunes MH; Souza CR; Ferreira GWD; Prado-Junior JAD; Rezende VL; Maciel R; Mantovani V; Rodrigues A; Morais VA; Scolforo JRS; Mello JM
    Sci Total Environ; 2023 Apr; 867():161320. PubMed ID: 36603629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growing biodiverse carbon-rich forests.
    Pichancourt JB; Firn J; Chadès I; Martin TG
    Glob Chang Biol; 2014 Feb; 20(2):382-93. PubMed ID: 23913584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human impacts in African savannas are mediated by plant functional traits.
    Osborne CP; Charles-Dominique T; Stevens N; Bond WJ; Midgley G; Lehmann CER
    New Phytol; 2018 Oct; 220(1):10-24. PubMed ID: 29806964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The underestimated biodiversity of tropical grassy biomes.
    Murphy BP; Andersen AN; Parr CL
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1703):. PubMed ID: 27502382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils.
    Fornara DA; Banin L; Crawley MJ
    Glob Chang Biol; 2013 Dec; 19(12):3848-57. PubMed ID: 23907927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ant diversity in Neotropical savannas: Hierarchical processes acting at multiple spatial scales.
    Maravalhas JB; Vasconcelos HL
    J Anim Ecol; 2020 Feb; 89(2):412-422. PubMed ID: 31556096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CERRADO SMALL MAMMALS: abundance and distribution of marsupials, lagomorphs, and rodents in a Neotropical savanna.
    Mendonça A; Percequillo AR; Camargo NF; Ribeiro JF; Palma ART; Oliveira LC; Câmara EMVC; Vieira EM
    Ecology; 2018 Aug; 99(8):1900. PubMed ID: 29701243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Grassland biodiversity and ecosystem functions benefit more from cattle than sheep in mixed grazing: A meta-analysis.
    Su J; Xu F; Zhang Y
    J Environ Manage; 2023 Jul; 337():117769. PubMed ID: 36958283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ephemeral forest regeneration limits carbon sequestration potential in the Brazilian Atlantic Forest.
    Piffer PR; Calaboni A; Rosa MR; Schwartz NB; Tambosi LR; Uriarte M
    Glob Chang Biol; 2022 Jan; 28(2):630-643. PubMed ID: 34665911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fire and legume germination in a tropical savanna: ecological and historical factors.
    Daibes LF; Pausas JG; Bonani N; Nunes J; Silveira FAO; Fidelis A
    Ann Bot; 2019 Jul; 123(7):1219-1229. PubMed ID: 30893418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A large-scale field assessment of carbon stocks in human-modified tropical forests.
    Berenguer E; Ferreira J; Gardner TA; Aragão LE; De Camargo PB; Cerri CE; Durigan M; Cosme De Oliveira Junior R; Vieira IC; Barlow J
    Glob Chang Biol; 2014 Dec; 20(12):3713-26. PubMed ID: 24865818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring Effect of Fire on Ant Assemblages in Brazilian Rupestrian Grasslands: Contrasting Effects on Ground and Arboreal Fauna.
    Anjos D; Campos R; Campos R; Ribeiro S
    Insects; 2017 Jun; 8(3):. PubMed ID: 28644376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Post-fire reproduction of herbs at a savanna-gallery forest boundary in Distrito Federal, Brazil.
    Massi KG; Eugênio CUO; Franco AC
    Braz J Biol; 2017 Nov; 77(4):876-886. PubMed ID: 28492804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Ground-Dwelling Ant Fauna from a Cerrado Reserve in Southeastern Brazil: Vegetation Heterogeneity as a Promoter of Ant Diversity.
    Vasconcelos HL; Feitosa RM; Durigan G; Leão REOS; Neves KCF
    Neotrop Entomol; 2023 Feb; 52(1):36-45. PubMed ID: 36447115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tropical savannas and dry forests.
    Pennington RT; Lehmann CER; Rowland LM
    Curr Biol; 2018 May; 28(9):R541-R545. PubMed ID: 29738723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.