BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

948 related articles for article (PubMed ID: 28875174)

  • 1. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity.
    Komor AC; Zhao KT; Packer MS; Gaudelli NM; Waterbury AL; Koblan LW; Kim YB; Badran AH; Liu DR
    Sci Adv; 2017 Aug; 3(8):eaao4774. PubMed ID: 28875174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
    Komor AC; Kim YB; Packer MS; Zuris JA; Liu DR
    Nature; 2016 May; 533(7603):420-4. PubMed ID: 27096365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient RNA-guided base editing in rabbit.
    Liu Z; Chen M; Chen S; Deng J; Song Y; Lai L; Li Z
    Nat Commun; 2018 Jul; 9(1):2717. PubMed ID: 30006570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytosine base editing in cyanobacteria by repressing archaic Type IV uracil-DNA glycosylase.
    Lee M; Heo YB; Woo HM
    Plant J; 2023 Feb; 113(3):610-625. PubMed ID: 36565011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase.
    Tong H; Wang H; Wang X; Liu N; Li G; Wu D; Li Y; Jin M; Li H; Wei Y; Li T; Yuan Y; Shi L; Yao X; Zhou Y; Yang H
    Nat Commun; 2024 Jun; 15(1):4897. PubMed ID: 38851742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus
    Zhang C; Li N; Rao L; Li J; Liu Q; Tian C
    Microbiol Spectr; 2022 Jun; 10(3):e0232121. PubMed ID: 35608343
    [No Abstract]   [Full Text] [Related]  

  • 8. Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing.
    He Y; Zhou X; Chang C; Chen G; Liu W; Li G; Fan X; Sun M; Miao C; Huang Q; Ma Y; Yuan F; Chang X
    Mol Cell; 2024 Apr; 84(7):1257-1270.e6. PubMed ID: 38377993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery.
    Rees HA; Komor AC; Yeh WH; Caetano-Lopes J; Warman M; Edge ASB; Liu DR
    Nat Commun; 2017 Jun; 8():15790. PubMed ID: 28585549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered CBEs based on Macaca fascicularis A3A with improved properties for precise genome editing.
    Ren CY; Liu YS; He YS; Zhang LP; Rao JH; Rao Y; Chen JH
    Cell Rep; 2024 Mar; 43(3):113878. PubMed ID: 38431844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A split cytosine deaminase architecture enables robust inducible base editing.
    Long J; Liu N; Tang W; Xie L; Qin F; Zhou L; Tao R; Wang Y; Hu Y; Jiao Y; Li L; Jiang L; Qu J; Chen Q; Yao S
    FASEB J; 2021 Dec; 35(12):e22045. PubMed ID: 34797942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities.
    Gehrke JM; Cervantes O; Clement MK; Wu Y; Zeng J; Bauer DE; Pinello L; Joung JK
    Nat Biotechnol; 2018 Nov; 36(10):977-982. PubMed ID: 30059493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns.
    Liang Y; Xie J; Zhang Q; Wang X; Gou S; Lin L; Chen T; Ge W; Zhuang Z; Lian M; Chen F; Li N; Ouyang Z; Lai C; Liu X; Li L; Ye Y; Wu H; Wang K; Lai L
    Nucleic Acids Res; 2022 May; 50(9):5384-5399. PubMed ID: 35544322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs.
    Yuan H; Yu T; Wang L; Yang L; Zhang Y; Liu H; Li M; Tang X; Liu Z; Li Z; Lu C; Chen X; Pang D; Ouyang H
    Cell Mol Life Sci; 2020 Feb; 77(4):719-733. PubMed ID: 31302752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase.
    Tong H; Liu N; Wei Y; Zhou Y; Li Y; Wu D; Jin M; Cui S; Li H; Li G; Zhou J; Yuan Y; Zhang H; Shi L; Yao X; Yang H
    Natl Sci Rev; 2023 Aug; 10(8):nwad143. PubMed ID: 37404457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two Compact Cas9 Ortholog-Based Cytosine Base Editors Expand the DNA Targeting Scope and Applications
    Wu S; Li L; Li M; Sun S; Zhao Y; Xue X; Chen F; Zhong J; Guo J; Qu Q; Wang X; Liu Z; Qiao Y
    Front Cell Dev Biol; 2022; 10():809922. PubMed ID: 35300420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosine Base Editor (hA3A-BE3-NG)-Mediated Multiple Gene Editing for Pyramid Breeding in Pigs.
    Wang Y; Bi D; Qin G; Song R; Yao J; Cao C; Zheng Q; Hou N; Wang Y; Zhao J
    Front Genet; 2020; 11():592623. PubMed ID: 33304388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences.
    Yu W; Li J; Huang S; Li X; Li P; Li G; Liang A; Chi T; Huang X
    BMC Biol; 2021 Feb; 19(1):34. PubMed ID: 33602235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing Cytosine Base Editing Scope and Efficiency With Engineered Cas9-PmCDA1 Fusions and the Modified sgRNA in Rice.
    Wu Y; Xu W; Wang F; Zhao S; Feng F; Song J; Zhang C; Yang J
    Front Genet; 2019; 10():379. PubMed ID: 31134125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The "new favorite" of gene editing technology-single base editors.
    Wei Y; Zhang XH; Li DL
    Yi Chuan; 2017 Dec; 39(12):1115-1121. PubMed ID: 29258982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.