These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28875269)

  • 1. The Programming Optimization of Capacitorless 1T DRAM Based on the Dual-Gate TFET.
    Li W; Liu H; Wang S; Chen S; Wang Q
    Nanoscale Res Lett; 2017 Sep; 12(1):524. PubMed ID: 28875269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Optimization of Spacer Engineering for Capacitor-Less DRAM Based on the Dual-Gate Tunneling Transistor.
    Li W; Liu H; Wang S; Chen S; Wang Q
    Nanoscale Res Lett; 2018 Mar; 13(1):73. PubMed ID: 29508093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a Capacitorless Dynamic Random Access Memory Based on Junctionless Dual-Gate Field-Effect Transistor with a Silicon-Germanium/Silicon Nanotube.
    Lee SH; Cho MS; Mun HJ; Park J; An HD; Jang J; Bae JH; Kang IM
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4235-4242. PubMed ID: 33714309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circuit Optimization Method to Reduce Disturbances in Poly-Si 1T-DRAM.
    Ha Y; Shin H; Sun W; Park J
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Capacitorless DRAM Based on a Polycrystalline-Silicon Dual-Gate MOSFET with a Fin-Shaped Structure.
    An HD; Lee SH; Park J; Min SR; Kim GU; Yoon YJ; Seo JH; Cho MS; Jang J; Bae JH; Lee SH; Kang IM
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capacitorless One-Transistor Dynamic Random-Access Memory Based on Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor with Si/SiGe Heterojunction and Underlap Structure for Improvement of Sensing Margin and Retention Time.
    Yoon YJ; Cho MS; Kim BG; Seo JH; Kang IM
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6023-6030. PubMed ID: 31026902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a Capacitorless Dynamic Random Access Memory Based on Ultra-Thin Polycrystalline Silicon Junctionless Field-Effect Transistor with Dual-Gate.
    Lee SH; Cho MS; Jung JH; Jang WD; Mun HJ; Jang J; Bae JH; Kang IM
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4223-4229. PubMed ID: 33714307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of High Performance Si/SiGe Heterojunction Tunneling FETs with a T-Shaped Gate.
    Li W; Liu H; Wang S; Chen S; Yang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):198. PubMed ID: 28314362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation for Electrical Performances of the Capacitorless Dynamic Random Access Memory Based on Junctionless FinFETs.
    Cho MS; Yoon YJ; Kim BG; Jung JH; Jang WD; Lee JH; Kang IM
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6755-6761. PubMed ID: 31027024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Capacitorless 1T DRAM with Embedded Oxide Layer.
    Zhao D; Xia Z; Yang T; Yang Y; Zhou W; Huo Z
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of a Lateral Grain Boundary for Reducing Performance Variations in Poly-Si 1T-DRAM.
    Yoo S; Sun W; Shin H
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33105643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capacitorless 1T-DRAM on crystallized poly-Si TFT.
    Kim MS; Cho WJ
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5608-11. PubMed ID: 22121578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the Sensing Margin of Silicon and Poly-Si 1T-DRAM.
    Kim H; Yoo S; Kang IM; Cho S; Sun W; Shin H
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32102235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacitorless One-Transistor Dynamic Random-Access Memory with Novel Mechanism: Self-Refreshing.
    Lee SH; Park J; Yoon YJ; Kang IM
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Germanium-Around-Source Gate-All-Around tunnelling Field-Effect Transistor for Low-Power Applications.
    Han K; Long S; Deng Z; Zhang Y; Li J
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32028719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Current Variation with Work Function Variation in L-Shaped Tunnel-Field Effect Transistor.
    Kim JH; Kim HW; Song YS; Kim S; Kim G
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32824238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of Capacitorless DRAM Based on the Polycrystalline Silicon Nanotube Structure with Multiple Grain Boundaries.
    Park J; Lee SH; Kang GE; Heo JH; Jeon SR; Kim MS; Bae SJ; Hong JW; Jang JW; Bae JH; Lee SH; Kang IM
    Nanomaterials (Basel); 2023 Jul; 13(13):. PubMed ID: 37446542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance tunnel field-effect transistor by gate and source engineering.
    Huang R; Huang Q; Chen S; Wu C; Wang J; An X; Wang Y
    Nanotechnology; 2014 Dec; 25(50):505201. PubMed ID: 25427134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A T-shaped gate tunneling field effect transistor with negative capacitance, super-steep subthreshold swing.
    Li W; Jia Q; Pan Y; Chen X; Yin Y; Wu Y; Wang Y; Wen Y; Wang C; Wang S
    Nanotechnology; 2021 Jul; 32(39):. PubMed ID: 34153962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disturbance Characteristics of 1T DRAM Arrays Consisting of Feedback Field-Effect Transistors.
    Jeon J; Cho K; Kim S
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.