BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28875303)

  • 1. RGO and Three-Dimensional Graphene Networks Co-modified TIMs with High Performances.
    Bo T; Zhengwei W; Huang W; Sen L; Tingting M; Haogang Y; Xufei L
    Nanoscale Res Lett; 2017 Sep; 12(1):527. PubMed ID: 28875303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-Assisted Thermal Interface Materials with a Satisfied Interface Contact Level Between the Matrix and Fillers.
    Tang B; Li X; Huang W; Yu H; Ling X
    Nanoscale Res Lett; 2018 Sep; 13(1):276. PubMed ID: 30203134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence from defects of three-dimensional graphene networks on the interface condition between the graphene basal plane and various resins.
    Tang B; Chen H; Sun Y; Li M; Wang Z; Yu H; Ma T; Li S
    RSC Adv; 2018 Aug; 8(49):27811-27817. PubMed ID: 35542701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced thermal properties of epoxy composites by constructing thermal conduction networks with low content of three-dimensional graphene.
    Li C; Huang M; Zhang Z; Qin Y; Liang L; Tian ZQ; Ali A; Shen PK
    Nanotechnology; 2023 Mar; 34(23):. PubMed ID: 36877999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphitized-rGO/Polyimide Aerogel as the Compressible Thermal Interface Material with Both High In-Plane and Through-Plane Thermal Conductivities.
    Lv P; Cheng H; Ji C; Wei W
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction.
    Dai W; Ren XJ; Yan Q; Wang S; Yang M; Lv L; Ying J; Chen L; Tao P; Sun L; Xue C; Yu J; Song C; Nishimura K; Jiang N; Lin CT
    Nanomicro Lett; 2022 Dec; 15(1):9. PubMed ID: 36484932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material.
    Lv L; Ying J; Chen L; Tao P; Sun L; Yang K; Fu L; Yu J; Yan Q; Dai W; Jiang N; Lin CT
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional graphene networks and RGO-based counter electrode for DSSCs.
    Tang B; Yu H; Huang W; Sun Y; Li X; Li S; Ma T
    RSC Adv; 2019 May; 9(28):15678-15685. PubMed ID: 35521385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene based photoanode for DSSCs with high performances.
    Tang B; Yu H; Peng H; Wang Z; Li S; Ma T; Huang W
    RSC Adv; 2018 Aug; 8(51):29220-29227. PubMed ID: 35547976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epoxy Nanocomposites with Reduced Graphene Oxide-Constructed Three-Dimensional Networks of Single Wall Carbon Nanotube for Enhanced Thermal Management Capability with Low Filler Loading.
    Liang X; Dai F
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3051-3058. PubMed ID: 31855411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Heterostructured Reduced Graphene Oxide-Hexagonal Boron Nitride-Stacking Material for Silicone Thermal Grease with Enhanced Thermally Conductive Properties.
    Liang W; Ge X; Ge J; Li T; Zhao T; Chen X; Zhang M; Ji J; Pang X; Liu R
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31261720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced Graphene Oxide Embedded with MQ Silicone Resin Nano-Aggregates for Silicone Rubber Composites with Enhanced Thermal Conductivity and Mechanical Performance.
    Liang W; Ge X; Ge J; Li T; Zhao T; Chen X; Song Y; Cui Y; Khan M; Ji J; Pang X; Liu R
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrosion Resistance and Thermal Conductivity Enhancement of Reduced Graphene Oxide-BaSO
    Yung TY; Lu WF; Tsai KC; Chen JS; Pang KN; Tzeng YC; Cheng HM; Chen PT
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide.
    Olowojoba GB; Kopsidas S; Eslava S; Gutierrez ES; Kinloch AJ; Mattevi C; Rocha VG; Taylor AC
    J Mater Sci; 2017; 52(12):7323-7344. PubMed ID: 32226133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally Reduced Graphene Oxide/Carbon Nanotube Composite Films for Thermal Packaging Applications.
    Yuan GJ; Xie JF; Li HH; Shan B; Zhang XX; Liu J; Li L; Tian YZ
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 32284495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Photocatalytic Performance of Two Types of Graphene Modified TiO
    Zhang J; Li S; Tang B; Wang Z; Ji G; Huang W; Wang J
    Nanoscale Res Lett; 2017 Dec; 12(1):457. PubMed ID: 28715879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergetic Improvement in Thermal Conductivity and Flame Retardancy of Epoxy/Silver Nanowires Composites by Incorporating "Branch-Like" Flame-Retardant Functionalized Graphene.
    Feng Y; Li X; Zhao X; Ye Y; Zhou X; Liu H; Liu C; Xie X
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21628-21641. PubMed ID: 29856592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the Thermal Transport of Hexagonal Boron Nitride/Reduced Graphene Oxide Heterostructures.
    Chen SN; Liu XS; Luo RH; Xu EZ; Tian JG; Liu ZB
    ACS Appl Mater Interfaces; 2022 May; 14(19):22626-22633. PubMed ID: 35522991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significant Reduction of Interfacial Thermal Resistance and Phonon Scattering in Graphene/Polyimide Thermally Conductive Composite Films for Thermal Management.
    Ruan K; Guo Y; Lu C; Shi X; Ma T; Zhang Y; Kong J; Gu J
    Research (Wash D C); 2021; 2021():8438614. PubMed ID: 33718876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Modification Using Polydopamine-Coated Liquid Metal Nanocapsules for Improving Performance of Graphene Paper-Based Thermal Interface Materials.
    Gao J; Yan Q; Tan X; Lv L; Ying J; Zhang X; Yang M; Du S; Wei Q; Xue C; Li H; Yu J; Lin CT; Dai W; Jiang N
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.