These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28875343)

  • 1. Production of tartaric acid using immobilized recominant cis-epoxysuccinate hydrolase.
    Wang Z; Su M; Li Y; Wang Y; Su Z
    Biotechnol Lett; 2017 Dec; 39(12):1859-1863. PubMed ID: 28875343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and production of recombinant cis-epoxysuccinate hydrolase in Escherichia coli under the control of temperature-dependent promoter.
    Wang Z; Wang Y; Shi H; Su Z
    J Biotechnol; 2012 Dec; 162(2-3):232-6. PubMed ID: 23026553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of Escherichia coli cells with cis-epoxysuccinate hydrolase activity for D(-)-tartaric acid production.
    Pan H; Bao W; Xie Z; Zhang J; Li Y
    Biotechnol Lett; 2010 Feb; 32(2):235-41. PubMed ID: 19844664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of the production efficiency of L-(+)-tartaric acid by heterogeneous whole-cell bioconversion.
    Wang Z; Wang Y; Shi H; Su Z
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3989-4001. PubMed ID: 24599671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of the stable strain Labrys sp. BK-8 for L(+)-tartaric acid production.
    Bao W; Pan H; Zhang Z; Cheng Y; Xie Z; Zhang J
    J Biosci Bioeng; 2015 May; 119(5):538-42. PubMed ID: 25468422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow calorimetry--a useful tool for determination of immobilized cis-epoxysuccinate hydrolase activity from Nocardia tartaricans.
    Vikartovská A; Bucko M; Gemeiner P; Nahálka J; Pätoprstý V; Hrabárová E
    Artif Cells Blood Substit Immobil Biotechnol; 2004 Feb; 32(1):77-89. PubMed ID: 15027803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound-assisted d-tartaric acid whole-cell bioconversion by recombinant Escherichia coli.
    Dong W; Zhao F; Xin F; He A; Zhang Y; Wu H; Fang Y; Zhang W; Ma J; Jiang M
    Ultrason Sonochem; 2018 Apr; 42():11-17. PubMed ID: 29429650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Production of L(+)-tartaric acid by immobilized Rhizobium strain BK-20].
    Lan X; Bao W; Pan H; Xie Z; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2014 Feb; 30(2):315-9. PubMed ID: 24941753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of a novel cis-epoxysuccinate hydrolase from Klebsiella sp. that produces L(+)-tartaric acid.
    Cheng Y; Wang L; Pan H; Bao W; Sun W; Xie Z; Zhang J; Zhao Y
    Biotechnol Lett; 2014 Nov; 36(11):2325-30. PubMed ID: 25048238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering the stereo-specific catalytic mechanisms of cis-epoxysuccinate hydrolases producing L(+)-tartaric acid.
    Dong S; Xuan J; Feng Y; Cui Q
    J Biol Chem; 2024 Feb; 300(2):105635. PubMed ID: 38199576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High yield recombinant expression, characterization and homology modeling of two types of cis-epoxysuccinic acid hydrolases.
    Cui GZ; Wang S; Li Y; Tian YJ; Feng Y; Cui Q
    Protein J; 2012 Jun; 31(5):432-8. PubMed ID: 22592448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantiomeric Tartaric Acid Production Using
    Xuan J; Feng Y
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30841503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, homology modeling, and reaction mechanism analysis of a novel cis-epoxysuccinate hydrolase from Klebsiella sp.
    Cheng Y; Pan H; Bao W; Sun W; Xie Z; Zhang J; Zhao Y
    Biotechnol Lett; 2014 Dec; 36(12):2537-44. PubMed ID: 25216644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Production of L(+)-tartaric acid by immobilized Corynebacterium sp. JZ-1].
    Zhang JG; Qian YJ
    Sheng Wu Gong Cheng Xue Bao; 2000 Mar; 16(2):188-92. PubMed ID: 10976324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Insights of a
    Han Y; Luo Y; Ma BD; Li J; Xu JH; Kong XD
    Biochemistry; 2024 Jun; 63(12):1578-1587. PubMed ID: 38803051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous production of L(+)-tartaric acid from cis-epoxysuccinate using a membrane recycle reactor.
    Willaert R; De Vuyst L
    Appl Microbiol Biotechnol; 2006 Jun; 71(2):155-63. PubMed ID: 16217652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and characterization of a cis-epoxysuccinate hydrolase from Bordetella sp. BK-52.
    Pan H; Bao W; Xie Z; Zhang J; Li Y
    J Microbiol Biotechnol; 2010 Apr; 20(4):659-65. PubMed ID: 20467235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of a cis-epoxysuccinic acid hydrolase from Nocardia tartaricans CAS-52, and expression in Escherichia coli.
    Wang Z; Wang Y; Su Z
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2433-41. PubMed ID: 22552902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of a novel strain Aspergillus niger WH-2 for production of L(+)-tartaric acid under acidic condition.
    Bao W; Liao H; Chen Y; Huang Q; Huang W; Fang R; Liu S
    Biotechnol Lett; 2020 Apr; 42(4):605-612. PubMed ID: 31955308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency and stability enhancement of cis-epoxysuccinic acid hydrolase by fusion with a carbohydrate binding module and immobilization onto cellulose.
    Wang S; Cui GZ; Song XF; Feng Y; Cui Q
    Appl Biochem Biotechnol; 2012 Oct; 168(3):708-17. PubMed ID: 22843080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.