BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 28875501)

  • 1. The protein kinase C super-family member PKN is regulated by mTOR and influences differentiation during prostate cancer progression.
    Yang CS; Melhuish TA; Spencer A; Ni L; Hao Y; Jividen K; Harris TE; Snow C; Frierson HF; Wotton D; Paschal BM
    Prostate; 2017 Nov; 77(15):1452-1467. PubMed ID: 28875501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Kinase N Promotes Stress-Induced Cardiac Dysfunction Through Phosphorylation of Myocardin-Related Transcription Factor A and Disruption of Its Interaction With Actin.
    Sakaguchi T; Takefuji M; Wettschureck N; Hamaguchi T; Amano M; Kato K; Tsuda T; Eguchi S; Ishihama S; Mori Y; Yura Y; Yoshida T; Unno K; Okumura T; Ishii H; Shimizu Y; Bando YK; Ohashi K; Ouchi N; Enomoto A; Offermanns S; Kaibuchi K; Murohara T
    Circulation; 2019 Nov; 140(21):1737-1752. PubMed ID: 31564129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis.
    Li N; Xue W; Yuan H; Dong B; Ding Y; Liu Y; Jiang M; Kan S; Sun T; Ren J; Pan Q; Li X; Zhang P; Hu G; Wang Y; Wang X; Li Q; Qin J
    J Clin Invest; 2017 Apr; 127(4):1284-1302. PubMed ID: 28319045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis.
    Tan M; Xu J; Siddiqui J; Feng F; Sun Y
    Mol Cancer; 2016 Dec; 15(1):81. PubMed ID: 27955654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperation between FGF8b overexpression and PTEN deficiency in prostate tumorigenesis.
    Zhong C; Saribekyan G; Liao CP; Cohen MB; Roy-Burman P
    Cancer Res; 2006 Feb; 66(4):2188-94. PubMed ID: 16489020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth.
    Blando J; Portis M; Benavides F; Alexander A; Mills G; Dave B; Conti CJ; Kim J; Walker CL
    Am J Pathol; 2009 May; 174(5):1869-79. PubMed ID: 19395652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylseleninic Acid Superactivates p53-Senescence Cancer Progression Barrier in Prostate Lesions of Pten-Knockout Mouse.
    Wang L; Guo X; Wang J; Jiang C; Bosland MC; Lü J; Deng Y
    Cancer Prev Res (Phila); 2016 Jan; 9(1):35-42. PubMed ID: 26511486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PTEN loss and activation of K-RAS and β-catenin cooperate to accelerate prostate tumourigenesis.
    Jefferies MT; Cox AC; Shorning BY; Meniel V; Griffiths D; Kynaston HG; Smalley MJ; Clarke AR
    J Pathol; 2017 Dec; 243(4):442-456. PubMed ID: 29134654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten-/-TP53-/- prostate cancer model.
    Abou-Kheir WG; Hynes PG; Martin PL; Pierce R; Kelly K
    Stem Cells; 2010 Dec; 28(12):2129-40. PubMed ID: 20936707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pace of prostatic intraepithelial neoplasia development is determined by the timing of Pten tumor suppressor gene excision.
    Luchman HA; Benediktsson H; Villemaire ML; Peterson AC; Jirik FR
    PLoS One; 2008; 3(12):e3940. PubMed ID: 19081794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells.
    Grünwald V; DeGraffenried L; Russel D; Friedrichs WE; Ray RB; Hidalgo M
    Cancer Res; 2002 Nov; 62(21):6141-5. PubMed ID: 12414639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined MYC Activation and Pten Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer.
    Hubbard GK; Mutton LN; Khalili M; McMullin RP; Hicks JL; Bianchi-Frias D; Horn LA; Kulac I; Moubarek MS; Nelson PS; Yegnasubramanian S; De Marzo AM; Bieberich CJ
    Cancer Res; 2016 Jan; 76(2):283-92. PubMed ID: 26554830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways.
    Xing C; Ci X; Sun X; Fu X; Zhang Z; Dong EN; Hao ZZ; Dong JT
    Neoplasia; 2014 Nov; 16(11):883-99. PubMed ID: 25425963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of Akt signaling in prostate induces a TGFβ-mediated restraint on cancer progression and metastasis.
    Bjerke GA; Yang CS; Frierson HF; Paschal BM; Wotton D
    Oncogene; 2014 Jul; 33(28):3660-7. PubMed ID: 23995785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways.
    Majumder PK; Febbo PG; Bikoff R; Berger R; Xue Q; McMahon LM; Manola J; Brugarolas J; McDonnell TJ; Golub TR; Loda M; Lane HA; Sellers WR
    Nat Med; 2004 Jun; 10(6):594-601. PubMed ID: 15156201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of Ceacam1 promotes prostate cancer progression in Pten haploinsufficient male mice.
    Liu J; Muturi HT; Khuder SS; Helal RA; Ghadieh HE; Ramakrishnan SK; Kaw MK; Lester SG; Al-Khudhair A; Conran PB; Chin KV; Gatto-Weis C; Najjar SM
    Metabolism; 2020 Jun; 107():154215. PubMed ID: 32209360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual inhibition of AKT-mTOR and AR signaling by targeting HDAC3 in
    Yan Y; An J; Yang Y; Wu D; Bai Y; Cao W; Ma L; Chen J; Yu Z; He Y; Jin X; Pan Y; Ma T; Wang S; Hou X; Weroha SJ; Karnes RJ; Zhang J; Westendorf JJ; Wang L; Chen Y; Xu W; Zhu R; Wang D; Huang H
    EMBO Mol Med; 2018 Apr; 10(4):. PubMed ID: 29523594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion.
    Quétier I; Marshall JJT; Spencer-Dene B; Lachmann S; Casamassima A; Franco C; Escuin S; Worrall JT; Baskaran P; Rajeeve V; Howell M; Copp AJ; Stamp G; Rosewell I; Cutillas P; Gerhardt H; Parker PJ; Cameron AJM
    Cell Rep; 2016 Jan; 14(3):440-448. PubMed ID: 26774483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of neutral endopeptidase and activation of protein kinase B (Akt) is associated with prostate cancer progression.
    Osman I; Dai J; Mikhail M; Navarro D; Taneja SS; Lee P; Christos P; Shen R; Nanus DM
    Cancer; 2006 Dec; 107(11):2628-36. PubMed ID: 17083125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential impact of PI3K/AKT/mTOR signaling on tumor initiation and progression in animal models of prostate cancer.
    Wang S; Zhang C; Xu Z; Chen MH; Yu H; Wang L; Liu R
    Prostate; 2023 Jan; 83(1):97-108. PubMed ID: 36164668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.