These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28875524)

  • 1. Iterative hard thresholding for model selection in genome-wide association studies.
    Keys KL; Chen GK; Lange K
    Genet Epidemiol; 2017 Dec; 41(8):756-768. PubMed ID: 28875524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative hard thresholding in genome-wide association studies: Generalized linear models, prior weights, and double sparsity.
    Chu BB; Keys KL; German CA; Zhou H; Zhou JJ; Sobel EM; Sinsheimer JS; Lange K
    Gigascience; 2020 Jun; 9(6):. PubMed ID: 32491161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes.
    Mägi R; Suleimanov YV; Clarke GM; Kaakinen M; Fischer K; Prokopenko I; Morris AP
    BMC Bioinformatics; 2017 Jan; 18(1):25. PubMed ID: 28077070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes.
    Chung W; Chen J; Turman C; Lindstrom S; Zhu Z; Loh PR; Kraft P; Liang L
    Nat Commun; 2019 Feb; 10(1):569. PubMed ID: 30718517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivariate genome-wide association analysis by iterative hard thresholding.
    Chu BB; Ko S; Zhou JJ; Jensen A; Zhou H; Sinsheimer JS; Lange K
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37067496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penalized multimarker vs. single-marker regression methods for genome-wide association studies of quantitative traits.
    Yi H; Breheny P; Imam N; Liu Y; Hoeschele I
    Genetics; 2015 Jan; 199(1):205-22. PubMed ID: 25354699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data.
    St-Pierre J; Oualkacha K; Bhatnagar SR
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36708013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
    Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional heritability mapping method helps explain missing heritability of blood lipid traits in isolated populations.
    Shirali M; Pong-Wong R; Navarro P; Knott S; Hayward C; Vitart V; Rudan I; Campbell H; Hastie ND; Wright AF; Haley CS
    Heredity (Edinb); 2016 Mar; 116(3):333-8. PubMed ID: 26696135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Implementation of Penalized Regression for Genetic Risk Prediction.
    Privé F; Aschard H; Blum MGB
    Genetics; 2019 May; 212(1):65-74. PubMed ID: 30808621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pleiotropic mapping and annotation selection in genome-wide association studies with penalized Gaussian mixture models.
    Zeng P; Hao X; Zhou X
    Bioinformatics; 2018 Aug; 34(16):2797-2807. PubMed ID: 29635306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting for linkage disequilibrium in genome-wide association studies: A penalized regression method.
    Liu J; Wang K; Ma S; Huang J
    Stat Interface; 2013 Jan; 6(1):99-115. PubMed ID: 25258655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prioritizing genetic variants in GWAS with lasso using permutation-assisted tuning.
    Yang S; Wen J; Eckert ST; Wang Y; Liu DJ; Wu R; Li R; Zhan X
    Bioinformatics; 2020 Jun; 36(12):3811-3817. PubMed ID: 32246825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic prediction of quantitative lipid traits: comparing shrinkage models to gene scores.
    Warren H; Casas JP; Hingorani A; Dudbridge F; Whittaker J
    Genet Epidemiol; 2014 Jan; 38(1):72-83. PubMed ID: 24272946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fast algorithm for Bayesian multi-locus model in genome-wide association studies.
    Duan W; Zhao Y; Wei Y; Yang S; Bai J; Shen S; Du M; Huang L; Hu Z; Chen F
    Mol Genet Genomics; 2017 Aug; 292(4):923-934. PubMed ID: 28534238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank.
    Qian J; Tanigawa Y; Du W; Aguirre M; Chang C; Tibshirani R; Rivas MA; Hastie T
    PLoS Genet; 2020 Oct; 16(10):e1009141. PubMed ID: 33095761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea).
    Dong L; Xiao S; Wang Q; Wang Z
    BMC Genomics; 2016 Jun; 17():460. PubMed ID: 27301965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data.
    Zhou H; Blangero J; Dyer TD; Chan KK; Lange K; Sobel EM
    Genet Epidemiol; 2017 Apr; 41(3):174-186. PubMed ID: 27943406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies.
    Sanyal N; Lo MT; Kauppi K; Djurovic S; Andreassen OA; Johnson VE; Chen CH
    Bioinformatics; 2019 Jan; 35(1):1-11. PubMed ID: 29931045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.