BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28875574)

  • 1. RGD-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells.
    Kudva AK; Luyten FP; Patterson J
    J Biomed Mater Res A; 2018 Jan; 106(1):33-42. PubMed ID: 28875574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Screening of Molecularly Engineered Polyethylene Glycol Hydrogels for Cartilage Tissue Engineering using Periosteum-Derived and ATDC5 Cells.
    Kudva AK; Luyten FP; Patterson J
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional, photocrosslinked hydrogel constructs: Effect of cell seeding density and material stiffness.
    Sun AX; Lin H; Fritch MR; Shen H; Alexander PG; DeHart M; Tuan RS
    Acta Biomater; 2017 Aug; 58():302-311. PubMed ID: 28611002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelatin microspheres releasing transforming growth factor drive in vitro chondrogenesis of human periosteum derived cells in micromass culture.
    Kudva AK; Dikina AD; Luyten FP; Alsberg E; Patterson J
    Acta Biomater; 2019 May; 90():287-299. PubMed ID: 30905864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initiating human articular chondrocyte re-differentiation in a 3D system after 2D expansion.
    Kudva AK; Luyten FP; Patterson J
    J Mater Sci Mater Med; 2017 Sep; 28(10):156. PubMed ID: 28875425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels.
    Hwang NS; Varghese S; Zhang Z; Elisseeff J
    Tissue Eng; 2006 Sep; 12(9):2695-706. PubMed ID: 16995803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing chondrogenesis and mechanical strength retention in physiologically relevant hydrogels with incorporation of hyaluronic acid and direct loading of TGF-β.
    Deng Y; Sun AX; Overholt KJ; Yu GZ; Fritch MR; Alexander PG; Shen H; Tuan RS; Lin H
    Acta Biomater; 2019 Jan; 83():167-176. PubMed ID: 30458242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage.
    Liu SQ; Tian Q; Hedrick JL; Po Hui JH; Ee PL; Yang YY
    Biomaterials; 2010 Oct; 31(28):7298-307. PubMed ID: 20615545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-functionalized starPEG/heparin hydrogels direct mitogenicity, cell morphology and cartilage matrix distribution in vitro and in vivo.
    Hesse E; Freudenberg U; Niemietz T; Greth C; Weisser M; Hagmann S; Binner M; Werner C; Richter W
    J Tissue Eng Regen Med; 2018 Jan; 12(1):229-239. PubMed ID: 28083992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis.
    Chung C; Burdick JA
    Tissue Eng Part A; 2009 Feb; 15(2):243-54. PubMed ID: 19193129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks.
    Salinas CN; Cole BB; Kasko AM; Anseth KS
    Tissue Eng; 2007 May; 13(5):1025-34. PubMed ID: 17417949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells.
    Mhanna R; Öztürk E; Vallmajo-Martin Q; Millan C; Müller M; Zenobi-Wong M
    Tissue Eng Part A; 2014 Apr; 20(7-8):1165-74. PubMed ID: 24134736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells.
    Salinas CN; Anseth KS
    J Biomed Mater Res A; 2009 Aug; 90(2):456-64. PubMed ID: 18546186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.
    Frith JE; Menzies DJ; Cameron AR; Ghosh P; Whitehead DL; Gronthos S; Zannettino AC; Cooper-White JJ
    Biomaterials; 2014 Jan; 35(4):1150-62. PubMed ID: 24215733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient cellular adhesion on poly(ethylene-glycol)-dimethacrylate hydrogels facilitates a novel stem cell bandage approach.
    Asawa RR; Belkowski JC; Schmitt DA; Hernandez EM; Babcock AE; Lochner CK; Baca HN; Rylatt CM; Steffes IS; VanSteenburg JJ; Diaz KE; Doroski DM
    PLoS One; 2018; 13(8):e0202825. PubMed ID: 30138479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture.
    Zhang J; Mujeeb A; Du Y; Lin J; Ge Z
    Biomed Mater; 2015 Jun; 10(3):035016. PubMed ID: 26107534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of tough poly(ethylene glycol)/collagen double network hydrogels for tissue engineering.
    Chen JX; Yuan J; Wu YL; Wang P; Zhao P; Lv GZ; Chen JH
    J Biomed Mater Res A; 2018 Jan; 106(1):192-200. PubMed ID: 28884502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial Analysis of Growth Factors Reveals the Contribution of Bone Morphogenetic Proteins to Chondrogenic Differentiation of Human Periosteal Cells.
    Mendes LF; Tam WL; Chai YC; Geris L; Luyten FP; Roberts SJ
    Tissue Eng Part C Methods; 2016 May; 22(5):473-86. PubMed ID: 27018617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.