These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 28875577)
1. Biocompatibility assessment of cyclic olefin copolymers: Impact of two additives on cytotoxicity, oxidative stress, inflammatory reactions, and hemocompatibility. Bernard M; Jubeli E; Bakar J; Tortolano L; Saunier J; Yagoubi N J Biomed Mater Res A; 2017 Dec; 105(12):3333-3349. PubMed ID: 28875577 [TBL] [Abstract][Full Text] [Related]
2. Impact of simulated biological aging on physicochemical and biocompatibility properties of cyclic olefin copolymers. Bernard M; Jubeli E; Bakar J; Saunier J; Yagoubi N Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():377-387. PubMed ID: 30678923 [TBL] [Abstract][Full Text] [Related]
3. Exudation of additives to the surface of medical devices: impact on biocompatibility in the case of polyurethane used in implantable catheters. Nouman M; Jubeli E; Saunier J; Yagoubi N J Biomed Mater Res A; 2016 Dec; 104(12):2954-2967. PubMed ID: 27448986 [TBL] [Abstract][Full Text] [Related]
8. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy. Wei Z; Tian P; Liu X; Zhou B Colloids Surf B Biointerfaces; 2014 Sep; 121():451-60. PubMed ID: 25009102 [TBL] [Abstract][Full Text] [Related]
9. MRI-compatible Nb-60Ta-2Zr alloy used for vascular stents: haemocompatibility and its correlation with protein adsorption. Li XM; Li HZ; Wang SP; Huang HM; Huang HH; Ai HJ; Xu J Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():385-95. PubMed ID: 25063132 [TBL] [Abstract][Full Text] [Related]
10. Physicochemical evaluation and in vitro hemocompatibility study on nanoporous hydroxyapatite. Ooi CH; Ling YP; Abdullah WZ; Mustafa AZ; Pung SY; Yeoh FY J Mater Sci Mater Med; 2019 Mar; 30(4):44. PubMed ID: 30929088 [TBL] [Abstract][Full Text] [Related]
11. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane. Zhao J; Farhatnia Y; Kalaskar DM; Zhang Y; Bulter PE; Seifalian AM Int J Biochem Cell Biol; 2015 Nov; 68():176-86. PubMed ID: 26279141 [TBL] [Abstract][Full Text] [Related]
12. A novel blood incubation system for the in-vitro assessment of interactions between platelets and biomaterial surfaces under dynamic flow conditions: The Hemocoater. Boudot C; Boccoz A; Düregger K; Kuhnla A J Biomed Mater Res A; 2016 Oct; 104(10):2430-40. PubMed ID: 27213915 [TBL] [Abstract][Full Text] [Related]
13. Hemocompatibility evaluation in vitro of methoxy polyethyleneglycol-polycaprolactone copolymer solutions. Hu Q; Zhang Y; Wang C; Xu J; Wu J; Liu Z; Xue W J Biomed Mater Res A; 2016 Mar; 104(3):802-812. PubMed ID: 26481428 [TBL] [Abstract][Full Text] [Related]
14. Improving assay feasibility and biocompatibility of 3D cyclic olefin copolymer microwells by superhydrophilic modification via ultrasonic spray deposition of polyvinyl alcohol. Jagannath A; Yu M; Li J; Zhang N; Gilchrist MD Biomater Adv; 2024 Oct; 163():213934. PubMed ID: 38954877 [TBL] [Abstract][Full Text] [Related]
15. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. Motlagh D; Allen J; Hoshi R; Yang J; Lui K; Ameer G J Biomed Mater Res A; 2007 Sep; 82(4):907-16. PubMed ID: 17335023 [TBL] [Abstract][Full Text] [Related]
16. Improved hemodialysis with hemocompatible polyethersulfone hollow fiber membranes: In vitro performance. Verma SK; Modi A; Singh AK; Teotia R; Bellare J J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1286-1298. PubMed ID: 28636168 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of nonbiofouling metal stent and in vitro studies on its hemocompatibility. Wang X; Miao J; Zhao H; Mao C; Chen X; Shen J J Biomater Appl; 2014 Jul; 29(1):14-25. PubMed ID: 24262304 [TBL] [Abstract][Full Text] [Related]
18. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Jiang H; Wang XB; Li CY; Li JS; Xu FJ; Mao C; Yang WT; Shen J Langmuir; 2011 Sep; 27(18):11575-81. PubMed ID: 21851101 [TBL] [Abstract][Full Text] [Related]
19. Physicochemical and in vitro biocompatibility evaluation of water-soluble CdSe/ZnS core/shell. Painuly D; Bhatt A; Krishnan VK J Biomater Appl; 2014 Apr; 28(8):1125-37. PubMed ID: 23904285 [TBL] [Abstract][Full Text] [Related]
20. Low-thrombogenic fibrin-heparin coating promotes in vitro endothelialization. Kaplan O; Hierlemann T; Krajewski S; Kurz J; Nevoralová M; Houska M; Riedel T; Riedelová Z; Zárubová J; Wendel HP; Brynda E J Biomed Mater Res A; 2017 Nov; 105(11):2995-3005. PubMed ID: 28646555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]