BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 28875692)

  • 41. In Situ Pyrolysis Concerted Formation of Si/C Hybrids during Molten Salt Electrolysis of SiO
    Weng W; Zeng C; Xiao W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9156-9163. PubMed ID: 30789694
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.
    Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries.
    Lin N; Zhou J; Wang L; Zhu Y; Qian Y
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):409-14. PubMed ID: 25494648
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facile Synthesis of SiO
    Zhao Y; Liu Z; Zhang Y; Mentbayeva A; Wang X; Maximov MY; Liu B; Bakenov Z; Yin F
    Nanoscale Res Lett; 2017 Dec; 12(1):459. PubMed ID: 28724265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode.
    Huang XD; Zhang F; Gan XF; Huang QA; Yang JZ; Lai PT; Tang WM
    RSC Adv; 2018 Jan; 8(10):5189-5196. PubMed ID: 35542431
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Porous α-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability.
    Ma F; Yuan A; Xu J; Hu P
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15531-41. PubMed ID: 26132052
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Raspberry-like Nanostructured Silicon Composite Anode for High-Performance Lithium-Ion Batteries.
    Fang S; Tong Z; Nie P; Liu G; Zhang X
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18766-18773. PubMed ID: 28504878
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A multilayered silicon-reduced graphene oxide electrode for high performance lithium-ion batteries.
    Gao X; Li J; Xie Y; Guan D; Yuan C
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7855-62. PubMed ID: 25826636
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering the Core-Shell-Structured NCNTs-Ni
    Chen M; Jing QS; Sun HB; Xu JQ; Yuan ZY; Ren JT; Ding AX; Huang ZY; Dong MY
    Langmuir; 2019 May; 35(19):6321-6332. PubMed ID: 31009568
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of Graphene on the Performance of Silicon-Carbon Composite Anode Materials for Lithium-Ion Batteries.
    Ni C; Xia C; Liu W; Xu W; Shan Z; Lei X; Qin H; Tao Z
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591635
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stable Silicon Anode for Lithium-Ion Batteries through Covalent Bond Formation with a Binder via Esterification.
    Jung CH; Kim KH; Hong SH
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26753-26763. PubMed ID: 31276371
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In Situ Construction of High-Performing Compact Si-SiO
    Wang R; Wang J; Chen S; Bao W; Li D; Zhang X; Liu Q; Song T; Su Y; Tan G
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5008-5016. PubMed ID: 33478210
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Embedded Si/Graphene Composite Fabricated by Magnesium-Thermal Reduction as Anode Material for Lithium-Ion Batteries.
    Zhu J; Ren Y; Yang B; Chen W; Ding J
    Nanoscale Res Lett; 2017 Dec; 12(1):627. PubMed ID: 29247261
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rational design of carbon network cross-linked Si-SiC hollow nanosphere as anode of lithium-ion batteries.
    Wen Z; Lu G; Cui S; Kim H; Ci S; Jiang J; Hurley PT; Chen J
    Nanoscale; 2014 Jan; 6(1):342-51. PubMed ID: 24196865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis and Electrochemical Performance of π-Conjugated Molecule Bridged Silicon Quantum Dot Cluster as Anode Material for Lithium-Ion Batteries.
    Choi YH; Park H; Lee S; Jeong HD
    ACS Omega; 2020 Apr; 5(15):8629-8637. PubMed ID: 32337426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries.
    Chen Y; Qian J; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3753-8. PubMed ID: 22757774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries.
    Zhou M; Cai T; Pu F; Chen H; Wang Z; Zhang H; Guan S
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3449-55. PubMed ID: 23527898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
    Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y
    ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.
    He M; Sa Q; Liu G; Wang Y
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11152-8. PubMed ID: 24111737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.