BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

666 related articles for article (PubMed ID: 28875706)

  • 1. Dietary Flavonoids and Acarbose Synergistically Inhibit α-Glucosidase and Lower Postprandial Blood Glucose.
    Zhang BW; Li X; Sun WL; Xing Y; Xiu ZL; Zhuang CL; Dong YS
    J Agric Food Chem; 2017 Sep; 65(38):8319-8330. PubMed ID: 28875706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary 5,6,7-Trihydroxy-flavonoid Aglycones and 1-Deoxynojirimycin Synergistically Inhibit the Recombinant Maltase-Glucoamylase Subunit of α-Glucosidase and Lower Postprandial Blood Glucose.
    Dong YS; Yu N; Li X; Zhang B; Xing Y; Zhuang C; Xiu ZL
    J Agric Food Chem; 2020 Aug; 68(33):8774-8787. PubMed ID: 32806121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of flavonoids from Oroxylum indicum seed extracts and acarbose improves the inhibition of postprandial blood glucose: In vivo and in vitro study.
    Zhang BW; Sang YB; Sun WL; Yu HS; Ma BP; Xiu ZL; Dong YS
    Biomed Pharmacother; 2017 Jul; 91():890-898. PubMed ID: 28511342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose.
    Yang J; Wang X; Zhang C; Ma L; Wei T; Zhao Y; Peng X
    Food Chem; 2021 Jun; 347():129056. PubMed ID: 33476922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity.
    Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K
    J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory Mechanism of Apigenin on α-Glucosidase and Synergy Analysis of Flavonoids.
    Zeng L; Zhang G; Lin S; Gong D
    J Agric Food Chem; 2016 Sep; 64(37):6939-49. PubMed ID: 27581205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico.
    Jhong CH; Riyaphan J; Lin SH; Chia YC; Weng CF
    Biofactors; 2015; 41(4):242-51. PubMed ID: 26154585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of flavonoids from banana pseudostem and flower (quercetin and catechin) as potent inhibitors of α-glucosidase: An in silico perspective.
    Patil SM; Martiz RM; Ramu R; Shirahatti PS; Prakash A; Kumar BRP; Kumar N
    J Biomol Struct Dyn; 2022; 40(23):12491-12505. PubMed ID: 34488558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resveratroloside Alleviates Postprandial Hyperglycemia in Diabetic Mice by Competitively Inhibiting α-Glucosidase.
    Zhao X; Tao J; Zhang T; Jiang S; Wei W; Han H; Shao Y; Zhou G; Yue H
    J Agric Food Chem; 2019 Mar; 67(10):2886-2893. PubMed ID: 30785285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proanthocyanidin B
    Han L; Zhang L; Ma W; Li D; Shi R; Wang M
    Food Funct; 2018 Sep; 9(9):4673-4682. PubMed ID: 30188554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose.
    Zhang BW; Xing Y; Wen C; Yu XX; Sun WL; Xiu ZL; Dong YS
    Bioorg Med Chem Lett; 2017 Nov; 27(22):5065-5070. PubMed ID: 28964635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of α-glucosidase by new prenylated flavonoids from euphorbia hirta L. herb.
    Sheliya MA; Rayhana B; Ali A; Pillai KK; Aeri V; Sharma M; Mir SR
    J Ethnopharmacol; 2015 Dec; 176():1-8. PubMed ID: 26477374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Glucosidase inhibitory effect of resveratrol and piceatannol.
    Zhang AJ; Rimando AM; Mizuno CS; Mathews ST
    J Nutr Biochem; 2017 Sep; 47():86-93. PubMed ID: 28570943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and in vitro evaluation of chlorogenic acid amides as potential hypoglycemic agents and their synergistic effect with acarbose.
    Cardullo N; Floresta G; Rescifina A; Muccilli V; Tringali C
    Bioorg Chem; 2021 Dec; 117():105458. PubMed ID: 34736132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of anti-diabetic and alpha glucosidase inhibitory action of anthraquinones from Rheum emodi.
    Arvindekar A; More T; Payghan PV; Laddha K; Ghoshal N; Arvindekar A
    Food Funct; 2015 Aug; 6(8):2693-700. PubMed ID: 26145710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolated compounds from Dracaena angustifolia Roxb and acarbose synergistically/additively inhibit α-glucosidase and α-amylase: an in vitro study.
    Yi J; Zhao T; Zhang Y; Tan Y; Han X; Tang Y; Chen G
    BMC Complement Med Ther; 2022 Jul; 22(1):177. PubMed ID: 35780093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of cooked starch digestion process using recombinant human pancreatic α-amylase and maltase-glucoamylase for in vitro evaluation of α-glucosidase inhibitors.
    Cao X; Zhang C; Dong Y; Geng P; Bai F; Bai G
    Carbohydr Res; 2015 Sep; 414():15-21. PubMed ID: 26162745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel molecular hybrids of EGCG and quinoxaline: Potent multi-targeting antidiabetic agents that inhibit α-glucosidase, α-amylase, and oxidative stress.
    Kothari M; Kannan K; Sahadevan R; Sadhukhan S
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130175. PubMed ID: 38360242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory mechanism of morin on α-glucosidase and its anti-glycation properties.
    Zeng L; Zhang G; Liao Y; Gong D
    Food Funct; 2016 Sep; 7(9):3953-63. PubMed ID: 27549567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase.
    Akkarachiyasit S; Charoenlertkul P; Yibchok-Anun S; Adisakwattana S
    Int J Mol Sci; 2010 Sep; 11(9):3387-96. PubMed ID: 20957102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.