BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28875707)

  • 1. Remote Manipulation of Ligand Nano-Oscillations Regulates Adhesion and Polarization of Macrophages in Vivo.
    Kang H; Kim S; Wong DSH; Jung HJ; Lin S; Zou K; Li R; Li G; Dravid VP; Bian L
    Nano Lett; 2017 Oct; 17(10):6415-6427. PubMed ID: 28875707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic Manipulation of Reversible Nanocaging Controls In Vivo Adhesion and Polarization of Macrophages.
    Kang H; Jung HJ; Kim SK; Wong DSH; Lin S; Li G; Dravid VP; Bian L
    ACS Nano; 2018 Jun; 12(6):5978-5994. PubMed ID: 29767957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote Control of Multimodal Nanoscale Ligand Oscillations Regulates Stem Cell Adhesion and Differentiation.
    Kang H; Wong DSH; Yan X; Jung HJ; Kim S; Lin S; Wei K; Li G; Dravid VP; Bian L
    ACS Nano; 2017 Oct; 11(10):9636-9649. PubMed ID: 28841292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization.
    Kang H; Zhang K; Wong DSH; Han F; Li B; Bian L
    Biomaterials; 2018 Sep; 178():681-696. PubMed ID: 29705000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic Ligand Nanogeometry Modulates the Adhesion and Polarization State of Macrophages.
    Kang H; Wong SHD; Pan Q; Li G; Bian L
    Nano Lett; 2019 Mar; 19(3):1963-1975. PubMed ID: 30740982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPION-MSCs enhance therapeutic efficacy in sepsis by regulating MSC-expressed TRAF1-dependent macrophage polarization.
    Xu Y; Liu X; Li Y; Dou H; Liang H; Hou Y
    Stem Cell Res Ther; 2021 Oct; 12(1):531. PubMed ID: 34627385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetically Tuning Tether Mobility of Integrin Ligand Regulates Adhesion, Spreading, and Differentiation of Stem Cells.
    Wong DS; Li J; Yan X; Wang B; Li R; Zhang L; Bian L
    Nano Lett; 2017 Mar; 17(3):1685-1695. PubMed ID: 28233497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote Control of Heterodimeric Magnetic Nanoswitch Regulates the Adhesion and Differentiation of Stem Cells.
    Kang H; Jung HJ; Wong DSH; Kim SK; Lin S; Chan KF; Zhang L; Li G; Dravid VP; Bian L
    J Am Chem Soc; 2018 May; 140(18):5909-5913. PubMed ID: 29681155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large and Externally Positioned Ligand-Coated Nanopatches Facilitate the Adhesion-Dependent Regenerative Polarization of Host Macrophages.
    Min S; Jeon YS; Choi H; Khatua C; Li N; Bae G; Jung HJ; Kim Y; Hong H; Shin J; Ko MJ; Ko HS; Kim T; Moon JH; Song JJ; Dravid VP; Kim YK; Kang H
    Nano Lett; 2020 Oct; 20(10):7272-7280. PubMed ID: 32910662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophage polarization in periodontal ligament stem cells enhanced periodontal regeneration.
    Liu J; Chen B; Bao J; Zhang Y; Lei L; Yan F
    Stem Cell Res Ther; 2019 Nov; 10(1):320. PubMed ID: 31730019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces.
    Lee CH; Kim YJ; Jang JH; Park JW
    Nanotechnology; 2016 Feb; 27(8):085101. PubMed ID: 26807875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mussel-Inspired Surface Immobilization of Heparin on Magnetic Nanoparticles for Enhanced Wound Repair via Sustained Release of a Growth Factor and M2 Macrophage Polarization.
    Wu J; Zhu J; Wu Q; An Y; Wang K; Xuan T; Zhang J; Song W; He H; Song L; Zheng J; Xiao J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2230-2244. PubMed ID: 33403850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent Tuning of Nano-Ligand Frequency and Sequences Regulates the Adhesion and Differentiation of Stem Cells.
    Min S; Jeon YS; Jung HJ; Khatua C; Li N; Bae G; Choi H; Hong H; Shin JE; Ko MJ; Ko HS; Jun I; Fu HE; Kim SH; Thangam R; Song JJ; Dravid VP; Kim YK; Kang H
    Adv Mater; 2020 Oct; 32(40):e2004300. PubMed ID: 32820574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization.
    Hao S; Meng J; Zhang Y; Liu J; Nie X; Wu F; Yang Y; Wang C; Gu N; Xu H
    Biomaterials; 2017 Sep; 140():16-25. PubMed ID: 28623721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro response of macrophage polarization to a keratin biomaterial.
    Fearing BV; Van Dyke ME
    Acta Biomater; 2014 Jul; 10(7):3136-44. PubMed ID: 24726958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hispanolone-derived diterpenoid inhibits M2-Macrophage polarization in vitro via JAK/STAT and attenuates chitin induced inflammation in vivo.
    Jiménez-García L; Higueras MÁ; Herranz S; Hernández-López M; Luque A; de Las Heras B; Hortelano S
    Biochem Pharmacol; 2018 Aug; 154():373-383. PubMed ID: 29870712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro distinction between proinflammatory and antiinflammatory macrophages with gadolinium-liposomes and ultrasmall superparamagnetic iron oxide particles at 3.0T.
    Khaled W; Piraquive J; Leporq B; Wan JH; Lambert SA; Mignet N; Doan BT; Lotersztajn S; Garteiser P; Van Beers BE
    J Magn Reson Imaging; 2019 Apr; 49(4):1166-1173. PubMed ID: 30390366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic-driven Interleukin-4 internalization promotes magnetic nanoparticle morphology and size-dependent macrophage polarization.
    Arnosa-Prieto Á; Diaz-Rodriguez P; González-Gómez MA; García-Acevedo P; de Castro-Alves L; Piñeiro Y; Rivas J
    J Colloid Interface Sci; 2024 Feb; 655():286-295. PubMed ID: 37944376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration.
    De Santa F; Vitiello L; Torcinaro A; Ferraro E
    Antioxid Redox Signal; 2019 Apr; 30(12):1553-1598. PubMed ID: 30070144
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease.
    Luo W; Xu Q; Wang Q; Wu H; Hua J
    Sci Rep; 2017 Mar; 7():44612. PubMed ID: 28300213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.