BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28875832)

  • 1. Structure, Gating and Basic Functions of the Ca2+-activated K Channel of Intermediate Conductance.
    Sforna L; Megaro A; Pessia M; Franciolini F; Catacuzzeno L
    Curr Neuropharmacol; 2018; 16(5):608-617. PubMed ID: 28875832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PKA reduces the rat and human KCa3.1 current, CaM binding, and Ca2+ signaling, which requires Ser332/334 in the CaM-binding C terminus.
    Wong R; Schlichter LC
    J Neurosci; 2014 Oct; 34(40):13371-83. PubMed ID: 25274816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the KCa3.1 channel-calmodulin interactions to the regulation of the KCa3.1 gating process.
    Morales P; Garneau L; Klein H; Lavoie MF; Parent L; Sauvé R
    J Gen Physiol; 2013 Jul; 142(1):37-60. PubMed ID: 23797421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective activation of KCa3.1 and CRAC channels by P2Y2 receptors promotes Ca(2+) signaling, store refilling and migration of rat microglial cells.
    Ferreira R; Schlichter LC
    PLoS One; 2013; 8(4):e62345. PubMed ID: 23620825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin.
    Schumacher MA; Rivard AF; Bächinger HP; Adelman JP
    Nature; 2001 Apr; 410(6832):1120-4. PubMed ID: 11323678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the activation gate for small conductance Ca2+-activated K+ channels.
    Bruening-Wright A; Schumacher MA; Adelman JP; Maylie J
    J Neurosci; 2002 Aug; 22(15):6499-506. PubMed ID: 12151529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1.
    Coleman N; Brown BM; Oliván-Viguera A; Singh V; Olmstead MM; Valero MS; Köhler R; Wulff H
    Mol Pharmacol; 2014 Sep; 86(3):342-57. PubMed ID: 24958817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase CK2 is coassembled with small conductance Ca(2+)-activated K+ channels and regulates channel gating.
    Bildl W; Strassmaier T; Thurm H; Andersen J; Eble S; Oliver D; Knipper M; Mann M; Schulte U; Adelman JP; Fakler B
    Neuron; 2004 Sep; 43(6):847-58. PubMed ID: 15363395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ca2+-activated K+ channel of intermediate conductance:a possible target for immune suppression.
    Jensen BS; Hertz M; Christophersen P; Madsen LS
    Expert Opin Ther Targets; 2002 Dec; 6(6):623-36. PubMed ID: 12472376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1.
    Fanger CM; Ghanshani S; Logsdon NJ; Rauer H; Kalman K; Zhou J; Beckingham K; Chandy KG; Cahalan MD; Aiyar J
    J Biol Chem; 1999 Feb; 274(9):5746-54. PubMed ID: 10026195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
    Horrigan FT; Aldrich RW
    J Gen Physiol; 2002 Sep; 120(3):267-305. PubMed ID: 12198087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Channelopathy of small- and intermediate-conductance Ca
    Nam YW; Downey M; Rahman MA; Cui M; Zhang M
    Acta Pharmacol Sin; 2023 Feb; 44(2):259-267. PubMed ID: 35715699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments?
    Jensen BS; Strøbaek D; Olesen SP; Christophersen P
    Curr Drug Targets; 2001 Dec; 2(4):401-22. PubMed ID: 11732639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylinositol 3-phosphate indirectly activates KCa3.1 via 14 amino acids in the carboxy terminus of KCa3.1.
    Srivastava S; Choudhury P; Li Z; Liu G; Nadkarni V; Ko K; Coetzee WA; Skolnik EY
    Mol Biol Cell; 2006 Jan; 17(1):146-54. PubMed ID: 16251351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine modification alters voltage- and Ca(2+)-dependent gating of large conductance (BK) potassium channels.
    Zhang G; Horrigan FT
    J Gen Physiol; 2005 Feb; 125(2):213-36. PubMed ID: 15684095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The beta1 subunit enhances oxidative regulation of large-conductance calcium-activated K+ channels.
    Santarelli LC; Chen J; Heinemann SH; Hoshi T
    J Gen Physiol; 2004 Oct; 124(4):357-70. PubMed ID: 15452197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are there superagonists for calcium-activated potassium channels?
    Brown BM; Shim H; Wulff H
    Channels (Austin); 2017 Nov; 11(6):504-506. PubMed ID: 28876978
    [No Abstract]   [Full Text] [Related]  

  • 18. Domains responsible for constitutive and Ca(2+)-dependent interactions between calmodulin and small conductance Ca(2+)-activated potassium channels.
    Keen JE; Khawaled R; Farrens DL; Neelands T; Rivard A; Bond CT; Janowsky A; Fakler B; Adelman JP; Maylie J
    J Neurosci; 1999 Oct; 19(20):8830-8. PubMed ID: 10516302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic interactions as key determinants to the KCa3.1 channel closed configuration. An analysis of KCa3.1 mutants constitutively active in zero Ca2+.
    Garneau L; Klein H; Banderali U; Longprá-Lauzon A; Parent L; Sauvá R
    J Biol Chem; 2009 Jan; 284(1):389-403. PubMed ID: 18996847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small conductance Ca2+-activated K+ channels and calmodulin.
    Maylie J; Bond CT; Herson PS; Lee WS; Adelman JP
    J Physiol; 2004 Jan; 554(Pt 2):255-61. PubMed ID: 14500775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.