BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 28875836)

  • 1. Coinhibitory Molecule PD-1 as a Therapeutic Target in the Microenvironment of Multiple Myeloma.
    Atanackovic D; Luetkens T; Radhakrishnan S; Kroger N
    Curr Cancer Drug Targets; 2017; 17(9):839-845. PubMed ID: 28875836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma.
    Görgün G; Samur MK; Cowens KB; Paula S; Bianchi G; Anderson JE; White RE; Singh A; Ohguchi H; Suzuki R; Kikuchi S; Harada T; Hideshima T; Tai YT; Laubach JP; Raje N; Magrangeas F; Minvielle S; Avet-Loiseau H; Munshi NC; Dorfman DM; Richardson PG; Anderson KC
    Clin Cancer Res; 2015 Oct; 21(20):4607-18. PubMed ID: 25979485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the PD-1/PD-L1 axis in multiple myeloma: a dream or a reality?
    Rosenblatt J; Avigan D
    Blood; 2017 Jan; 129(3):275-279. PubMed ID: 27919908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1.
    Tai YT; Cho SF; Anderson KC
    Front Immunol; 2018; 9():1822. PubMed ID: 30147691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PD-L1/PD-1 Pattern of Expression Within the Bone Marrow Immune Microenvironment in Smoldering Myeloma and Active Multiple Myeloma Patients.
    Costa F; Vescovini R; Marchica V; Storti P; Notarfranchi L; Dalla Palma B; Toscani D; Burroughs-Garcia J; Catarozzo MT; Sammarelli G; Giuliani N
    Front Immunol; 2020; 11():613007. PubMed ID: 33488620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloma Drug Resistance Induced by Binding of Myeloma B7-H1 (PD-L1) to PD-1.
    Ishibashi M; Tamura H; Sunakawa M; Kondo-Onodera A; Okuyama N; Hamada Y; Moriya K; Choi I; Tamada K; Inokuchi K
    Cancer Immunol Res; 2016 Sep; 4(9):779-88. PubMed ID: 27440711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune Checkpoint Inhibition Followed by Tumor Infiltration of Dendritic Cells in Murine Neuro-2a Neuroblastoma.
    Inoue S; Horiuchi Y; Setoyama Y; Takeuchi Y; Beck Y; Murakami T; Odaka A
    J Surg Res; 2020 Sep; 253():201-213. PubMed ID: 32380346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PD-L1/PD-1 axis as a potent therapeutic target in breast cancer.
    Bastaki S; Irandoust M; Ahmadi A; Hojjat-Farsangi M; Ambrose P; Hallaj S; Edalati M; Ghalamfarsa G; Azizi G; Yousefi M; Chalajour H; Jadidi-Niaragh F
    Life Sci; 2020 Apr; 247():117437. PubMed ID: 32070710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond.
    Ai L; Xu A; Xu J
    Adv Exp Med Biol; 2020; 1248():33-59. PubMed ID: 32185706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma.
    Podar K; Jager D
    Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy.
    Chung C
    Pharmacotherapy; 2017 Jan; 37(1):129-143. PubMed ID: 27870103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PD-1-PD-L1 immune-checkpoint blockade in malignant lymphomas.
    Wang Y; Wu L; Tian C; Zhang Y
    Ann Hematol; 2018 Feb; 97(2):229-237. PubMed ID: 29128997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging role of immunotherapy in urothelial carcinoma-Immunobiology/biomarkers.
    Sweis RF; Galsky MD
    Urol Oncol; 2016 Dec; 34(12):556-565. PubMed ID: 27836246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is There a Role for Programmed Death Ligand-1 Testing and Immunotherapy in Colorectal Cancer With Microsatellite Instability? Part II-The Challenge of Programmed Death Ligand-1 Testing and Its Role in Microsatellite Instability-High Colorectal Cancer.
    Marginean EC; Melosky B
    Arch Pathol Lab Med; 2018 Jan; 142(1):26-34. PubMed ID: 29120224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-PD-L1/PD-1 immune therapies in ovarian cancer: basic mechanism and future clinical application.
    Mandai M; Hamanishi J; Abiko K; Matsumura N; Baba T; Konishi I
    Int J Clin Oncol; 2016 Jun; 21(3):456-61. PubMed ID: 26968587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas.
    Goodman A; Patel SP; Kurzrock R
    Nat Rev Clin Oncol; 2017 Apr; 14(4):203-220. PubMed ID: 27805626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PD-1/PD-L1 and immunotherapy for pancreatic cancer.
    Feng M; Xiong G; Cao Z; Yang G; Zheng S; Song X; You L; Zheng L; Zhang T; Zhao Y
    Cancer Lett; 2017 Oct; 407():57-65. PubMed ID: 28826722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PD-1/PD-L1 expression in extra-medullary lesions of multiple myeloma.
    Crescenzi A; Annibali O; Bianchi A; Pagano A; Donati M; Grifoni A; Avvisati G
    Leuk Res; 2016 Oct; 49():98-101. PubMed ID: 27619200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruxolitinib reverses checkpoint inhibition by reducing programmed cell death ligand-1 (PD-L1) expression and increases anti-tumour effects of T cells in multiple myeloma.
    Chen H; Li M; Ng N; Yu E; Bujarski S; Yin Z; Wen M; Hekmati T; Field D; Wang J; Nassir I; Yu J; Huang J; Daniely D; Wang CS; Xu N; Spektor TM; Berenson JR
    Br J Haematol; 2021 Feb; 192(3):568-576. PubMed ID: 33341940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immuno-oncologic Approaches: CAR-T Cells and Checkpoint Inhibitors.
    Gay F; D'Agostino M; Giaccone L; Genuardi M; Festuccia M; Boccadoro M; Bruno B
    Clin Lymphoma Myeloma Leuk; 2017 Aug; 17(8):471-478. PubMed ID: 28689001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.