These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 28876010)
1. Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. Kulkarni JA; Tam YYC; Chen S; Tam YK; Zaifman J; Cullis PR; Biswas S Nanoscale; 2017 Sep; 9(36):13600-13609. PubMed ID: 28876010 [TBL] [Abstract][Full Text] [Related]
2. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Zhigaltsev IV; Belliveau N; Hafez I; Leung AK; Huft J; Hansen C; Cullis PR Langmuir; 2012 Feb; 28(7):3633-40. PubMed ID: 22268499 [TBL] [Abstract][Full Text] [Related]
3. Chelation, formulation, encapsulation, retention, and in vivo biodistribution of hydrophobic nanoparticles labelled with Hervella P; Dam JH; Thisgaard H; Baun C; Olsen BB; Høilund-Carlsen PF; Needham D J Control Release; 2018 Dec; 291():11-25. PubMed ID: 30291986 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Lipid Nanoparticles Containing Ionizable Cationic Lipids Using Design-of-Experiments Approach. Terada T; Kulkarni JA; Huynh A; Chen S; van der Meel R; Tam YYC; Cullis PR Langmuir; 2021 Jan; 37(3):1120-1128. PubMed ID: 33439022 [TBL] [Abstract][Full Text] [Related]
5. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Cheng X; Lee RJ Adv Drug Deliv Rev; 2016 Apr; 99(Pt A):129-137. PubMed ID: 26900977 [TBL] [Abstract][Full Text] [Related]
6. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform. Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and Characterization of Hybrid Lipid Nanoparticles Containing Gold Nanoparticles and a Weak Base Drug. Zhigaltsev IV; Tam YYC; Kulkarni JA; Cullis PR Langmuir; 2022 Jun; 38(25):7858-7866. PubMed ID: 35708310 [TBL] [Abstract][Full Text] [Related]
8. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. Maeki M; Fujishima Y; Sato Y; Yasui T; Kaji N; Ishida A; Tani H; Baba Y; Harashima H; Tokeshi M PLoS One; 2017; 12(11):e0187962. PubMed ID: 29182626 [TBL] [Abstract][Full Text] [Related]
9. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles: Liquid cored nanoparticles show better retention than a solid core formulation. Hervella P; Parra E; Needham D Eur J Pharm Biopharm; 2016 May; 102():64-76. PubMed ID: 26925504 [TBL] [Abstract][Full Text] [Related]
10. Stabilization of Ostwald ripening in low molecular weight amino lipid nanoparticles for systemic delivery of siRNA therapeutics. Gindy ME; Feuston B; Glass A; Arrington L; Haas RM; Schariter J; Stirdivant SM Mol Pharm; 2014 Nov; 11(11):4143-53. PubMed ID: 25317715 [TBL] [Abstract][Full Text] [Related]
11. Assessing the heterogeneity level in lipid nanoparticles for siRNA delivery: size-based separation, compositional heterogeneity, and impact on bioperformance. Zhang J; Pei Y; Zhang H; Wang L; Arrington L; Zhang Y; Glass A; Leone AM Mol Pharm; 2013 Jan; 10(1):397-405. PubMed ID: 23210488 [TBL] [Abstract][Full Text] [Related]
12. Polydispersity characterization of lipid nanoparticles for siRNA delivery using multiple detection size-exclusion chromatography. Zhang J; Haas RM; Leone AM Anal Chem; 2012 Jul; 84(14):6088-96. PubMed ID: 22816783 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of macromolecular structure evolution in self-assembled lipid nanoparticles for siRNA delivery. Gindy ME; DiFelice K; Kumar V; Prud'homme RK; Celano R; Haas RM; Smith JS; Boardman D Langmuir; 2014 Apr; 30(16):4613-22. PubMed ID: 24684657 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. Leung AK; Tam YY; Chen S; Hafez IM; Cullis PR J Phys Chem B; 2015 Jul; 119(28):8698-706. PubMed ID: 26087393 [TBL] [Abstract][Full Text] [Related]
15. A magnetic separation method for isolating and characterizing the biomolecular corona of lipid nanoparticles. Francia V; Zhang Y; Cheng MHY; Schiffelers RM; Witzigmann D; Cullis PR Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2307803120. PubMed ID: 38437542 [TBL] [Abstract][Full Text] [Related]
16. Design of abiotic polymer ligand-decorated lipid nanoparticles for effective neutralization of target toxins in the blood. Koide H; Yamauchi I; Hoshino Y; Yasuno G; Okamoto T; Akashi S; Saito K; Oku N; Asai T Biomater Sci; 2021 Aug; 9(16):5588-5598. PubMed ID: 34241600 [TBL] [Abstract][Full Text] [Related]
17. PEG-OligoRNA Hybridization of mRNA for Developing Sterically Stable Lipid Nanoparticles toward In Vivo Administration. Kurimoto S; Yoshinaga N; Igarashi K; Matsumoto Y; Cabral H; Uchida S Molecules; 2019 Apr; 24(7):. PubMed ID: 30987102 [TBL] [Abstract][Full Text] [Related]
18. Predictive high-throughput screening of PEGylated lipids in oligonucleotide-loaded lipid nanoparticles for neuronal gene silencing. Sarode A; Fan Y; Byrnes AE; Hammel M; Hura GL; Fu Y; Kou P; Hu C; Hinz FI; Roberts J; Koenig SG; Nagapudi K; Hoogenraad CC; Chen T; Leung D; Yen CW Nanoscale Adv; 2022 May; 4(9):2107-2123. PubMed ID: 36133441 [TBL] [Abstract][Full Text] [Related]
19. A Simple and Improved Active Loading Method to Efficiently Encapsulate Staurosporine into Lipid-Based Nanoparticles for Enhanced Therapy of Multidrug Resistant Cancer. Tang WL; Chen WC; Roy A; Undzys E; Li SD Pharm Res; 2016 May; 33(5):1104-14. PubMed ID: 26758590 [TBL] [Abstract][Full Text] [Related]
20. Scalable Production of Lipid Nanoparticles Containing Amphotericin B. Kulkarni JA; Chen S; Tam YYC Langmuir; 2021 Jun; 37(24):7312-7319. PubMed ID: 34101472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]