BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1967 related articles for article (PubMed ID: 28876055)

  • 21. Solution conformational features and interfacial properties of an intrinsically disordered peptide coupled to alkyl chains: a new class of peptide amphiphiles.
    Accardo A; Leone M; Tesauro D; Aufiero R; Bénarouche A; Cavalier JF; Longhi S; Carriere F; Rossi F
    Mol Biosyst; 2013 Jun; 9(6):1401-10. PubMed ID: 23483086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Urea-Modified Self-Assembling Peptide Amphiphiles That Form Well-Defined Nanostructures and Hydrogels for Biomedical Applications.
    Xing H; Rodger A; Comer J; Picco AS; Huck-Iriart C; Ezell EL; Conda-Sheridan M
    ACS Appl Bio Mater; 2022 Oct; 5(10):4599-4610. PubMed ID: 35653507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supramolecular self-assembly of fluorescent peptide amphiphiles for accurate and reversible pH measurement.
    Mei L; He S; Zhang L; Xu K; Zhong W
    Org Biomol Chem; 2019 Jan; 17(4):939-944. PubMed ID: 30629073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tenascin-C mimetic peptide amphiphile nanofiber gel promotes neurite outgrowth and cell migration of neurosphere-derived cells.
    Berns EJ; Álvarez Z; Goldberger JE; Boekhoven J; Kessler JA; Kuhn HG; Stupp SI
    Acta Biomater; 2016 Jun; 37():50-8. PubMed ID: 27063496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical Self-Assembly of Histidine-Functionalized Peptide Amphiphiles into Supramolecular Chiral Nanostructures.
    Hatip Koc M; Cinar Ciftci G; Baday S; Castelletto V; Hamley IW; Guler MO
    Langmuir; 2017 Aug; 33(32):7947-7956. PubMed ID: 28753315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tail of two peptide amphiphiles: effect of conjugation with hydrophobic polymer on folding of peptide sequences.
    Chu BK; Fu IW; Markegard CB; Choi SE; Nguyen HD
    Biomacromolecules; 2014 Sep; 15(9):3313-20. PubMed ID: 25068712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developing Polyamine-Based Peptide Amphiphiles with Tunable Morphology and Physicochemical Properties.
    Samad MB; Chhonker YS; Contreras JI; McCarthy A; McClanahan MM; Murry DJ; Conda-Sheridan M
    Macromol Biosci; 2017 Aug; 17(8):. PubMed ID: 28509362
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Hydrogen Bonding by Urea Functionalization Tunes the Stability and Biological Properties of Peptide Amphiphiles.
    Xing H; Wigham C; Lee SR; Pereira AJ; de Campos LJ; Picco AS; Huck-Iriart C; Escudero C; Perez-Chirinos L; Gajaweera S; Comer J; Sasselli IR; Stupp SI; Zha RH; Conda-Sheridan M
    Biomacromolecules; 2024 May; 25(5):2823-2837. PubMed ID: 38602228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels.
    Cinar G; Ozdemir A; Hamsici S; Gunay G; Dana A; Tekinay AB; Guler MO
    Biomater Sci; 2016 Dec; 5(1):67-76. PubMed ID: 27819087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.
    Deshmukh SA; Solomon LA; Kamath G; Fry HC; Sankaranarayanan SK
    Nat Commun; 2016 Aug; 7():12367. PubMed ID: 27554944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Hydrophobic/Aromatic Residues on the Stability of Double-Wall β-Sheet Structures Formed by a Triblock Peptide.
    Ozgur B; Sayar M
    J Phys Chem B; 2017 Apr; 121(16):4115-4128. PubMed ID: 28399374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Assembling Multidomain Peptide Nanofibers for Delivery of Bioactive Molecules and Tissue Regeneration.
    Moore AN; Hartgerink JD
    Acc Chem Res; 2017 Apr; 50(4):714-722. PubMed ID: 28191928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Presentation of RGDS epitopes on self-assembled nanofibers of branched peptide amphiphiles.
    Guler MO; Hsu L; Soukasene S; Harrington DA; Hulvat JF; Stupp SI
    Biomacromolecules; 2006 Jun; 7(6):1855-63. PubMed ID: 16768407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails.
    Xu XD; Jin Y; Liu Y; Zhang XZ; Zhuo RX
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):329-35. PubMed ID: 20678903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning supramolecular rigidity of peptide fibers through molecular structure.
    Pashuck ET; Cui H; Stupp SI
    J Am Chem Soc; 2010 May; 132(17):6041-6. PubMed ID: 20377229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular design for growth of supramolecular membranes with hierarchical structure.
    Zha RH; Velichko YS; Bitton R; Stupp SI
    Soft Matter; 2016 Feb; 12(5):1401-10. PubMed ID: 26649980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembly of cytotoxic peptide amphiphiles into supramolecular membranes for cancer therapy.
    Zha RH; Sur S; Stupp SI
    Adv Healthc Mater; 2013 Jan; 2(1):126-33. PubMed ID: 23184589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hybrid biomimetic nanomatrix composed of electrospun polycaprolactone and bioactive peptide amphiphiles for cardiovascular implants.
    Andukuri A; Kushwaha M; Tambralli A; Anderson JM; Dean DR; Berry JL; Sohn YD; Yoon YS; Brott BC; Jun HW
    Acta Biomater; 2011 Jan; 7(1):225-33. PubMed ID: 20728588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water.
    Rho JY; Cox H; Mansfield EDH; Ellacott SH; Peltier R; Brendel JC; Hartlieb M; Waigh TA; Perrier S
    Nat Commun; 2019 Oct; 10(1):4708. PubMed ID: 31624265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular simulation study of peptide amphiphile self-assembly.
    Velichko YS; Stupp SI; de la Cruz MO
    J Phys Chem B; 2008 Feb; 112(8):2326-34. PubMed ID: 18251531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 99.