These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 28876339)

  • 1. High temperature activation of hematite nanorods for sunlight driven water oxidation reaction.
    Ito NM; Carvalho WM; Muche DNF; Castro RHR; Dalpian GM; Souza FL
    Phys Chem Chem Phys; 2017 Sep; 19(36):25025-25032. PubMed ID: 28876339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly self-diffused Sn doping in α-Fe
    Ma H; Mahadik MA; Park JW; Kumar M; Chung HS; Chae WS; Kong GW; Lee HH; Choi SH; Jang JS
    Nanoscale; 2018 Dec; 10(47):22560-22571. PubMed ID: 30480694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature.
    Cho ES; Kang MJ; Kang YS
    Phys Chem Chem Phys; 2015 Jun; 17(24):16145-50. PubMed ID: 26032403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thin-Layer Fe2TiO5 on Hematite for Efficient Solar Water Oxidation.
    Deng J; Lv X; Liu J; Zhang H; Nie K; Hong C; Wang J; Sun X; Zhong J; Lee ST
    ACS Nano; 2015 May; 9(5):5348-56. PubMed ID: 25885275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.
    Fu L; Yu H; Li Y; Zhang C; Wang X; Shao Z; Yi B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4284-90. PubMed ID: 24451918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sunlight-driven water splitting using hematite nanorod photoelectrodes.
    Souza FL
    An Acad Bras Cienc; 2018; 90(1 Suppl 1):745-762. PubMed ID: 29742209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal Cathodic Photocurrent Generated on an n-Type FeOOH Nanorod-Array Photoelectrode.
    Chen H; Lyu M; Liu G; Wang L
    Chemistry; 2016 Mar; 22(14):4802-8. PubMed ID: 26879339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y; Wang G; Wang H; Yang Y; Li Y
    ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nanostructured hematite film prepared by a facile "top down" method for application in photoelectrochemistry.
    Qin DD; Li Y; Ning XM; Wang QH; He CH; Quan JJ; Chen J; Li YT; Lu XQ; Tao CL
    Dalton Trans; 2016 Oct; 45(41):16221-16230. PubMed ID: 27711735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding charge transport in non-doped pristine and surface passivated hematite (Fe
    Bassi PS; Xianglin L; Fang Y; Loo JS; Barber J; Wong LH
    Phys Chem Chem Phys; 2016 Nov; 18(44):30370-30378. PubMed ID: 27782252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent.
    Fan K; Li F; Wang L; Daniel Q; Chen H; Gabrielsson E; Sun J; Sun L
    ChemSusChem; 2015 Oct; 8(19):3242-7. PubMed ID: 26315677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting.
    Wang D; Zhang Y; Peng C; Wang J; Huang Q; Su S; Wang L; Huang W; Fan C
    Adv Sci (Weinh); 2015 Apr; 2(4):1500005. PubMed ID: 27660739
    [No Abstract]   [Full Text] [Related]  

  • 17. Enhancing the water splitting efficiency of Sn-doped hematite nanoflakes by flame annealing.
    Wang L; Lee CY; Mazare A; Lee K; Müller J; Spiecker E; Schmuki P
    Chemistry; 2014 Jan; 20(1):77-82. PubMed ID: 24338769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese.
    Gurudayal ; Chiam SY; Kumar MH; Bassi PS; Seng HL; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5852-9. PubMed ID: 24702963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hematite Surface Activation by Chemical Addition of Tin Oxide Layer.
    Carvalho WM; Souza FL
    Chemphyschem; 2016 Sep; 17(17):2710-7. PubMed ID: 27237432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.