These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28876351)

  • 1. Optimization of a synthetic receptor for dimethyllysine using a biphenyl-2,6-dicarboxylic acid scaffold: insights into selective recognition of hydrophilic guests in water.
    Gober IN; Waters ML
    Org Biomol Chem; 2017 Sep; 15(37):7789-7795. PubMed ID: 28876351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of pocket depth and electrostatic interactions to affinity and selectivity of receptors for methylated lysine in water.
    Beaver JE; Peacor BC; Bain JV; James LI; Waters ML
    Org Biomol Chem; 2015 Mar; 13(11):3220-6. PubMed ID: 25437861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and mechanistic studies of an optimized receptor for trimethyllysine using iterative redesign by dynamic combinatorial chemistry.
    Pinkin NK; Waters ML
    Org Biomol Chem; 2014 Sep; 12(36):7059-67. PubMed ID: 25078127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving High Affinity and Selectivity for Asymmetric Dimethylarginine by Putting a Lid on a Box.
    Mullins AG; Pinkin NK; Hardin JA; Waters ML
    Angew Chem Int Ed Engl; 2019 Apr; 58(16):5282-5285. PubMed ID: 30784149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Late stage modification of receptors identified from dynamic combinatorial libraries.
    Pinkin NK; N Power A; Waters ML
    Org Biomol Chem; 2015 Nov; 13(44):10939-45. PubMed ID: 26384269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An easily accessible, lower rim substituted calix[4]arene selectively binds
    Shaurya A; Garnett GAE; Starke MJ; Grasdal MC; Dewar CC; Kliuchynskyi AY; Hof F
    Org Biomol Chem; 2021 Jun; 19(21):4691-4696. PubMed ID: 33978657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mimicking Biological Recognition: Lessons in Binding Hydrophilic Guests in Water.
    Ferguson Johns HP; Harrison EE; Stingley KJ; Waters ML
    Chemistry; 2021 Apr; 27(22):6620-6644. PubMed ID: 33048395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the relation between amplification and binding in dynamic combinatorial libraries of macrocyclic synthetic receptors in water.
    Corbett PT; Sanders JK; Otto S
    Chemistry; 2008; 14(7):2153-66. PubMed ID: 18081129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic Recognition and Optical Sensing of Carboxylic Acids in Water by Using a Buried Salt Bridge and the Hydrophobic Effect.
    Huang X; Wang X; Quan M; Yao H; Ke H; Jiang W
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):1929-1935. PubMed ID: 33089632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary Binding Interactions in a Synthetic Receptor for Trimethyllysine.
    Pinkin NK; Liu I; Abron JD; Waters ML
    Chemistry; 2015 Dec; 21(49):17981-6. PubMed ID: 26487572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synthetic receptor for nicotine from a dynamic combinatorial library.
    Hamieh S; Ludlow RF; Perraud O; West KR; Mattia E; Otto S
    Org Lett; 2012 Nov; 14(21):5404-7. PubMed ID: 23067115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of new trisulfonated calix[4]arenes functionalized at the upper rim, and their complexation with the trimethyllysine epigenetic mark.
    Daze KD; Ma MC; Pineux F; Hof F
    Org Lett; 2012 Mar; 14(6):1512-5. PubMed ID: 22397706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding trimethyllysine and other cationic guests in water with a series of indole-derived hosts: large differences in affinity from subtle changes in structure.
    Whiting AL; Hof F
    Org Biomol Chem; 2012 Sep; 10(34):6885-92. PubMed ID: 22828995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl) piperazine-2,3-dicarboxylic acid.
    Feng B; Tse HW; Skifter DA; Morley R; Jane DE; Monaghan DT
    Br J Pharmacol; 2004 Feb; 141(3):508-16. PubMed ID: 14718249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptic Peptides Bearing C-Terminal Dimethyllysine Need to Be Considered during the Analysis of Lysine Dimethylation in Proteomic Study.
    Chen M; Zhang M; Zhai L; Hu H; Liu P; Tan M
    J Proteome Res; 2017 Sep; 16(9):3460-3469. PubMed ID: 28730820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective molecular recognition of methylated lysines and arginines by cucurbit[6]uril and cucurbit[7]uril in aqueous solution.
    Gamal-Eldin MA; Macartney DH
    Org Biomol Chem; 2013 Jan; 11(3):488-95. PubMed ID: 23202694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular Affinity Labeling of Histone Peptides Containing Trimethyllysine and Its Application to Histone Deacetylase Assays.
    Gober IN; Waters ML
    J Am Chem Soc; 2016 Aug; 138(30):9452-9. PubMed ID: 27387477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A designed antagonist of the thyroid hormone receptor.
    Yoshihara HA; Apriletti JW; Baxter JD; Scanlan TS
    Bioorg Med Chem Lett; 2001 Nov; 11(21):2821-5. PubMed ID: 11597408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New H-bonding patterns in biphenyl-based synthetic lectins; pyrrolediamine bridges enhance glucose-selectivity.
    Joshi G; Davis AP
    Org Biomol Chem; 2012 Aug; 10(30):5760-3. PubMed ID: 22717686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Recognition of Hydrophilic Molecules in Water by Combining the Hydrophobic Effect with Hydrogen Bonding.
    Yao H; Ke H; Zhang X; Pan SJ; Li MS; Yang LP; Schreckenbach G; Jiang W
    J Am Chem Soc; 2018 Oct; 140(41):13466-13477. PubMed ID: 30244569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.