BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 28876923)

  • 21. Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton.
    Lee Y; Cho W; Sung J; Kim E; Park SB
    J Am Chem Soc; 2018 Jan; 140(3):974-983. PubMed ID: 29240995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimizing the Genetic Incorporation of Chemical Probes into GPCRs for Photo-crosslinking Mapping and Bioorthogonal Chemistry in Live Mammalian Cells.
    Serfling R; Seidel L; Böttke T; Coin I
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.
    Späte AK; Schart VF; Schöllkopf S; Niederwieser A; Wittmann V
    Chemistry; 2014 Dec; 20(50):16502-8. PubMed ID: 25298205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vinylboronic Acids as Efficient Bioorthogonal Reactants for Tetrazine Labeling in Living Cells.
    Eising S; van der Linden NGA; Kleinpenning F; Bonger KM
    Bioconjug Chem; 2018 Apr; 29(4):982-986. PubMed ID: 29438611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformationally Strained trans-Cyclooctene (sTCO) Enables the Rapid Construction of (18)F-PET Probes via Tetrazine Ligation.
    Wang M; Svatunek D; Rohlfing K; Liu Y; Wang H; Giglio B; Yuan H; Wu Z; Li Z; Fox J
    Theranostics; 2016; 6(6):887-95. PubMed ID: 27162558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Live-Cell Imaging of Sterculic Acid-a Naturally Occurring 1,2-Cyclopropene Fatty Acid-by Bioorthogonal Reaction with Turn-On Tetrazine-Fluorophore Conjugates.
    Bertheussen K; van de Plassche M; Bakkum T; Gagestein B; Ttofi I; Sarris AJC; Overkleeft HS; van der Stelt M; van Kasteren SI
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202207640. PubMed ID: 35838324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Minimal, Unstrained S-Allyl Handle for Pre-Targeting Diels-Alder Bioorthogonal Labeling in Live Cells.
    Oliveira BL; Guo Z; Boutureira O; Guerreiro A; Jiménez-Osés G; Bernardes GJ
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14683-14687. PubMed ID: 27763724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SNAP/CLIP-Tags and Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC)/Inverse Electron Demand Diels-Alder (IEDDA) for Intracellular Orthogonal/Bioorthogonal Labeling.
    Macias-Contreras M; He H; Little KN; Lee JP; Campbell RP; Royzen M; Zhu L
    Bioconjug Chem; 2020 May; 31(5):1370-1381. PubMed ID: 32223177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions.
    Lang K; Davis L; Wallace S; Mahesh M; Cox DJ; Blackman ML; Fox JM; Chin JW
    J Am Chem Soc; 2012 Jun; 134(25):10317-20. PubMed ID: 22694658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Labeling proteins on live mammalian cells using click chemistry.
    Nikić I; Kang JH; Girona GE; Aramburu IV; Lemke EA
    Nat Protoc; 2015 May; 10(5):780-91. PubMed ID: 25906116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic encoding of unnatural amino acids for labeling proteins.
    Lang K; Davis L; Chin JW
    Methods Mol Biol; 2015; 1266():217-28. PubMed ID: 25560078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.
    Baalmann M; Best M; Wombacher R
    Methods Mol Biol; 2018; 1728():365-387. PubMed ID: 29405010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-step protein labeling by using lipoic acid ligase with norbornene substrates and subsequent inverse-electron demand Diels-Alder reaction.
    Best M; Degen A; Baalmann M; Schmidt TT; Wombacher R
    Chembiochem; 2015 May; 16(8):1158-62. PubMed ID: 25900689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative Multi-color Detection Strategies for Bioorthogonally Labeled GPCRs.
    Park M; Tian H; Naganathan S; Sakmar TP; Huber T
    Methods Mol Biol; 2015; 1335():67-93. PubMed ID: 26260595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimized Tetrazine Derivatives for Rapid Bioorthogonal Decaging in Living Cells.
    Fan X; Ge Y; Lin F; Yang Y; Zhang G; Ngai WS; Lin Z; Zheng S; Wang J; Zhao J; Li J; Chen PR
    Angew Chem Int Ed Engl; 2016 Nov; 55(45):14046-14050. PubMed ID: 27735133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tetrazine-Triggered Release of Carboxylic-Acid-Containing Molecules for Activation of an Anti-inflammatory Drug.
    Davies S; Qiao L; Oliveira BL; Navo CD; Jiménez-Osés G; Bernardes GJL
    Chembiochem; 2019 Jun; 20(12):1541-1546. PubMed ID: 30773780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity.
    Blackman ML; Royzen M; Fox JM
    J Am Chem Soc; 2008 Oct; 130(41):13518-9. PubMed ID: 18798613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved metabolic stability for 18F PET probes rapidly constructed via tetrazine trans-cyclooctene ligation.
    Selvaraj R; Giglio B; Liu S; Wang H; Wang M; Yuan H; Chintala SR; Yap LP; Conti PS; Fox JM; Li Z
    Bioconjug Chem; 2015 Mar; 26(3):435-42. PubMed ID: 25679331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inverse Electron-Demand Diels-Alder Bioorthogonal Reactions.
    Wu H; Devaraj NK
    Top Curr Chem (Cham); 2016 Feb; 374(1):3. PubMed ID: 27572986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nature-Inspired Bioorthogonal Reaction: Development of β-Caryophyllene as a Chemical Reporter in Tetrazine Ligation.
    Wu Y; Hu J; Sun C; Cao Y; Li Y; Xie F; Zeng T; Zhou B; Du J; Tang Y
    Bioconjug Chem; 2018 Jul; 29(7):2287-2295. PubMed ID: 29851464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.