These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28877161)

  • 21. A model equation for the prediction of mechanical internal work of terrestrial locomotion.
    Minetti AE
    J Biomech; 1998 May; 31(5):463-8. PubMed ID: 9727344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analytical method for the analysis and simulation of human locomotion.
    Amirouche FM; Ider SK; Trimble J
    J Biomech Eng; 1990 Nov; 112(4):379-86. PubMed ID: 2273863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation of aperiodic bipedal sprinting.
    Celik H; Piazza SJ
    J Biomech Eng; 2013 Aug; 135(8):81008. PubMed ID: 23722442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic analysis of load carriage biomechanics during level walking.
    Ren L; Jones RK; Howard D
    J Biomech; 2005 Apr; 38(4):853-63. PubMed ID: 15713307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative collision-based analysis of human gait.
    Lee DV; Comanescu TN; Butcher MT; Bertram JE
    Proc Biol Sci; 2013 Nov; 280(1771):20131779. PubMed ID: 24089334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy.
    Ackermann M; van den Bogert AJ
    J Biomech; 2012 Apr; 45(7):1293-8. PubMed ID: 22365845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of object carriage on independent locomotion.
    Mangalindan DM; Schmuckler MA; Li SA
    Infant Behav Dev; 2014 Feb; 37(1):76-85. PubMed ID: 24463338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanics of locomotion in lizards.
    Farley CT; Ko TC
    J Exp Biol; 1997 Aug; 200(Pt 16):2177-88. PubMed ID: 9286099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model of bipedal locomotion on compliant legs.
    Alexander RM
    Philos Trans R Soc Lond B Biol Sci; 1992 Oct; 338(1284):189-98. PubMed ID: 1360684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
    Grabowska M; Godlewska E; Schmidt J; Daun-Gruhn S
    J Exp Biol; 2012 Dec; 215(Pt 24):4255-66. PubMed ID: 22972892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into the evolution of human bipedalism from experimental studies of humans and other primates.
    Schmitt D
    J Exp Biol; 2003 May; 206(Pt 9):1437-48. PubMed ID: 12654883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscles do more positive than negative work in human locomotion.
    DeVita P; Helseth J; Hortobagyi T
    J Exp Biol; 2007 Oct; 210(Pt 19):3361-73. PubMed ID: 17872990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer optimization of a minimal biped model discovers walking and running.
    Srinivasan M; Ruina A
    Nature; 2006 Jan; 439(7072):72-5. PubMed ID: 16155564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How locomotion sub-functions can control walking at different speeds?
    Ahmad Sharbafi M; Seyfarth A
    J Biomech; 2017 Feb; 53():163-170. PubMed ID: 28131486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the mechanics of functional asymmetry in bipedal walking.
    Gregg RD; Dhaher YY; Degani A; Lynch KM
    IEEE Trans Biomed Eng; 2012 May; 59(5):1310-8. PubMed ID: 22328168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brief communication: Dynamic plantar pressure distribution during locomotion in Japanese macaques (Macaca fuscata).
    Hirasaki E; Higurashi Y; Kumakura H
    Am J Phys Anthropol; 2010 May; 142(1):149-56. PubMed ID: 20027608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of substrate size on the locomotion and gait patterns of the kinkajou (Potos flavus).
    Lemelin P; Cartmill M
    J Exp Zool A Ecol Genet Physiol; 2010 Mar; 313(3):157-68. PubMed ID: 20095011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.