These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28877196)

  • 1. Predicting active-layer soil thickness using topographic variables at a small watershed scale.
    Li A; Tan X; Wu W; Liu H; Zhu J
    PLoS One; 2017; 12(9):e0183742. PubMed ID: 28877196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Assessment of the Influences of Human Impacts on Soil Cd Concentrations Based on Stepwise Linear Regression, Classification and Regression Tree, and Random Forest Models.
    Qiu L; Wang K; Long W; Wang K; Hu W; Amable GS
    PLoS One; 2016; 11(3):e0151131. PubMed ID: 26964095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved similarity-based approach to predicting and mapping soil organic carbon and soil total nitrogen in a coastal region of northeastern China.
    Wang S; Adhikari K; Zhuang Q; Yang Z; Jin X; Wang Q; Bian Z
    PeerJ; 2020; 8():e9126. PubMed ID: 32518723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map.
    Parsaie F; Farrokhian Firouzi A; Mousavi SR; Rahmani A; Sedri MH; Homaee M
    Environ Monit Assess; 2021 Mar; 193(4):162. PubMed ID: 33665671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of terrain attributes and human activities on soil texture class variations in hilly areas, south-west China.
    Li AD; Guo PT; Wu W; Liu HB
    Environ Monit Assess; 2017 Jun; 189(6):281. PubMed ID: 28534308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion.
    Garosi Y; Sheklabadi M; Conoscenti C; Pourghasemi HR; Van Oost K
    Sci Total Environ; 2019 May; 664():1117-1132. PubMed ID: 30901785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].
    Yang SH; Zhang HT; Guo L; Ren Y
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1649-56. PubMed ID: 26572015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Spatial distribution of soil total nitrogen in Liangshui National Nature Reserve based on local model].
    Zhen Z; Guo ZY; Zhao YH; Li FR; Wei QB
    Ying Yong Sheng Tai Xue Bao; 2016 Feb; 27(2):549-58. PubMed ID: 27396130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models.
    Forkuor G; Hounkpatin OK; Welp G; Thiel M
    PLoS One; 2017; 12(1):e0170478. PubMed ID: 28114334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of spectral and spatial-based approaches for mapping the local variation of soil moisture in a semi-arid mountainous area.
    Fathololoumi S; Vaezi AR; Alavipanah SK; Ghorbani A; Biswas A
    Sci Total Environ; 2020 Jul; 724():138319. PubMed ID: 32408464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale.
    Song YQ; Zhao X; Su HY; Li B; Hu YM; Cui XS
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial prediction of soil depth using environmental covariates by quantile regression forest model.
    Lalitha M; Dharumarajan S; Suputhra A; Kalaiselvi B; Hegde R; Reddy RS; Prasad CRS; Harindranath CS; Dwivedi BS
    Environ Monit Assess; 2021 Sep; 193(10):660. PubMed ID: 34535809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Different Machine Learning Methods for Predicting Cation Exchange Capacity Using Environmental and Remote Sensing Data.
    Saidi S; Ayoubi S; Shirvani M; Azizi K; Zeraatpisheh M
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration.
    Band SS; Janizadeh S; Pal SC; Chowdhuri I; Siabi Z; Norouzi A; Melesse AM; Shokri M; Mosavi A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33053663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spatial Prediction Method of Farmland Soil Organic Matter in Weibei Dryland of Shaanxi Province].
    Wei F; Liu J; Xia LH; Xu ZW; Long XC
    Huan Jing Ke Xue; 2022 Feb; 43(2):1097-1107. PubMed ID: 35075884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of soil depth using a soil-landscape regression model: a case study on forest soils in southern Taiwan.
    Tsai CC; Chen ZS; Duh CT; Horng FW
    Proc Natl Sci Counc Repub China B; 2001 Jan; 25(1):34-9. PubMed ID: 11254170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].
    Han ZY; Zhu XC; Fang XY; Wang ZY; Wang L; Zhao GX; Jiang YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):800-5. PubMed ID: 27400527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: the case study of Denmark.
    Bou Kheir R; Greve MH; Bøcher PK; Greve MB; Larsen R; McCloy K
    J Environ Manage; 2010 May; 91(5):1150-60. PubMed ID: 20106585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution prediction of soil As in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data.
    Liu G; Zhou X; Li Q; Shi Y; Guo G; Zhao L; Wang J; Su Y; Zhang C
    Environ Pollut; 2020 Dec; 267():115631. PubMed ID: 33254608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the concentration of antimony in agricultural soil using data fusion, terrain attributes combined with regression kriging.
    Agyeman PC; Kingsley J; Kebonye NM; Khosravi V; Borůvka L; Vašát R
    Environ Pollut; 2023 Jan; 316(Pt 1):120697. PubMed ID: 36403872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.