These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28877225)

  • 21. Influence of recovery manipulation after hyperlactemia induction on the lactate minimum intensity.
    Ribeiro LF; Gonçalves CG; Kater DP; Lima MC; Gobatto CA
    Eur J Appl Physiol; 2009 Jan; 105(2):159-65. PubMed ID: 18853175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pre-exercise alkalosis and acid-base recovery.
    Siegler JC; Keatley S; Midgley AW; Nevill AM; McNaughton LR
    Int J Sports Med; 2008 Jul; 29(7):545-51. PubMed ID: 18004683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lactate kinetics during passive and partially active recovery in endurance and sprint athletes.
    Taoutaou Z; Granier P; Mercier B; Mercier J; Ahmaidi S; Prefaut C
    Eur J Appl Physiol Occup Physiol; 1996; 73(5):465-70. PubMed ID: 8803508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of combined active recovery from supramaximal exercise on blood lactate disappearance in trained and untrained man.
    Gmada N; Bouhlel E; Mrizak I; Debabi H; Ben Jabrallah M; Tabka Z; Feki Y; Amri M
    Int J Sports Med; 2005 Dec; 26(10):874-9. PubMed ID: 16320173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contrast water immersion hastens plasma lactate decrease after intense anaerobic exercise.
    Morton RH
    J Sci Med Sport; 2007 Dec; 10(6):467-70. PubMed ID: 17118706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cold water recovery reduces anaerobic performance.
    Crowe MJ; O'Connor D; Rudd D
    Int J Sports Med; 2007 Dec; 28(12):994-8. PubMed ID: 17534786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effectiveness of low-frequency vibration recovery method on blood lactate removal, muscle contractile properties and on time to exhaustion during cycling at VO₂max power output.
    Carrasco L; Sañudo B; de Hoyo M; Pradas F; Da Silva ME
    Eur J Appl Physiol; 2011 Sep; 111(9):2271-9. PubMed ID: 21327798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Effects of Caffeine Supplementation on Physiological Responses to Submaximal Exercise in Endurance-Trained Men.
    Glaister M; Williams BH; Muniz-Pumares D; Balsalobre-Fernández C; Foley P
    PLoS One; 2016; 11(8):e0161375. PubMed ID: 27532605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of active vs. passive recovery on work performed during serial supramaximal exercise tests.
    Spierer DK; Goldsmith R; Baran DA; Hryniewicz K; Katz SD
    Int J Sports Med; 2004 Feb; 25(2):109-14. PubMed ID: 14986193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Postexercise cold-water immersion improves intermittent high-intensity exercise performance in normothermia.
    McCarthy A; Mulligan J; Egaña M
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1163-1170. PubMed ID: 27786541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of duration of active or passive recovery on performance and muscle oxygenation during intermittent sprint cycling exercise.
    Ohya T; Aramaki Y; Kitagawa K
    Int J Sports Med; 2013 Jul; 34(7):616-22. PubMed ID: 23325717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inspiratory loading intensity does not influence lactate clearance during recovery.
    Johnson MA; Mills DE; Brown DM; Bayfield KJ; Gonzalez JT; Sharpe GR
    Med Sci Sports Exerc; 2012 May; 44(5):863-71. PubMed ID: 22089476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of oral creatine supplementation on multiple sprint cycle performance.
    Barnett C; Hinds M; Jenkins DG
    Aust J Sci Med Sport; 1996 Mar; 28(1):35-9. PubMed ID: 8742865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stretching and deep and superficial massage do not influence blood lactate levels after heavy-intensity cycle exercise.
    Cè E; Limonta E; Maggioni MA; Rampichini S; Veicsteinas A; Esposito F
    J Sports Sci; 2013; 31(8):856-66. PubMed ID: 23256711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lactate recovery kinetics in response to high-intensity exercises.
    Chatel B; Bret C; Edouard P; Oullion R; Freund H; Messonnier LA
    Eur J Appl Physiol; 2016 Aug; 116(8):1455-65. PubMed ID: 27364321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of training on lactate kinetics parameters and their influence on short high-intensity exercise performance.
    Messonnier L; Freund H; Denis C; Féasson L; Lacour JR
    Int J Sports Med; 2006 Jan; 27(1):60-6. PubMed ID: 16388444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prior heavy-intensity exercise's enhancement of oxygen-uptake kinetics and short-term high-intensity exercise performance independent of aerobic-training status.
    Caritá RA; Greco CC; Denadai BS
    Int J Sports Physiol Perform; 2015 Apr; 10(3):339-45. PubMed ID: 25203458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of leg massage on recovery from high intensity cycling exercise.
    Robertson A; Watt JM; Galloway SD
    Br J Sports Med; 2004 Apr; 38(2):173-6. PubMed ID: 15039254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of cold water immersion and active recovery on post-exercise heart rate variability.
    Bastos FN; Vanderlei LC; Nakamura FY; Bertollo M; Godoy MF; Hoshi RA; Junior JN; Pastre CM
    Int J Sports Med; 2012 Nov; 33(11):873-9. PubMed ID: 22722961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intensity effect of active recovery from glycolytic exercise on decreasing blood lactate concentration in prepubertal children.
    Dotan R; Falk B; Raz A
    Med Sci Sports Exerc; 2000 Mar; 32(3):564-70. PubMed ID: 10730996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.