These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 28877545)
1. In vivo assessment of muscle membrane properties in the sodium channel myotonias. Tan SV; Z'Graggen WJ; Hanna MG; Bostock H Muscle Nerve; 2018 Apr; 57(4):586-594. PubMed ID: 28877545 [TBL] [Abstract][Full Text] [Related]
2. Chloride channels in myotonia congenita assessed by velocity recovery cycles. Tan SV; Z'Graggen WJ; Boërio D; Rayan DR; Norwood F; Ruddy D; Howard R; Hanna MG; Bostock H Muscle Nerve; 2014 Jun; 49(6):845-57. PubMed ID: 24037712 [TBL] [Abstract][Full Text] [Related]
3. N1366S mutation of human skeletal muscle sodium channel causes paramyotonia congenita. Ke Q; Ye J; Tang S; Wang J; Luo B; Ji F; Zhang X; Yu Y; Cheng X; Li Y J Physiol; 2017 Nov; 595(22):6837-6850. PubMed ID: 28940424 [TBL] [Abstract][Full Text] [Related]
4. In vivo assessment of interictal sarcolemmal membrane properties in hypokalaemic and hyperkalaemic periodic paralysis. Tan SV; Suetterlin K; Männikkö R; Matthews E; Hanna MG; Bostock H Clin Neurophysiol; 2020 Apr; 131(4):816-827. PubMed ID: 32066100 [TBL] [Abstract][Full Text] [Related]
5. Sarcolemmal excitability in the myotonic dystrophies. Boland-Freitas R; Lee J; Howells J; Liang C; Corbett A; Nicholson G; Ng K Muscle Nerve; 2018 Apr; 57(4):595-602. PubMed ID: 28881011 [TBL] [Abstract][Full Text] [Related]
6. In vivo assessment of muscle membrane properties in myotonic dystrophy. Tan SV; Z'graggen WJ; Boërio D; Turner C; Hanna MG; Bostock H Muscle Nerve; 2016 Aug; 54(2):249-57. PubMed ID: 26789642 [TBL] [Abstract][Full Text] [Related]
7. Force training induces changes in human muscle membrane properties. Z'Graggen WJ; Trautmann JP; Bostock H Muscle Nerve; 2016 Jun; 54(1):144-6. PubMed ID: 27104654 [TBL] [Abstract][Full Text] [Related]
8. Multiple sclerosis and non-dystrophic myotonias: do they share a common pathophysiology? Portaro S; Naro A; Russo M; Bramanti P; Lauria P; D'Aleo G; La Rosa G; Bramanti A; Calabrò RS Funct Neurol; 2018; 33(4):194-199. PubMed ID: 30663965 [TBL] [Abstract][Full Text] [Related]
9. Comparative efficacy of repetitive nerve stimulation, exercise, and cold in differentiating myotonic disorders. Michel P; Sternberg D; Jeannet PY; Dunand M; Thonney F; Kress W; Fontaine B; Fournier E; Kuntzer T Muscle Nerve; 2007 Nov; 36(5):643-50. PubMed ID: 17654559 [TBL] [Abstract][Full Text] [Related]
10. Nav 1.4 slow-inactivation: is it a player in the warm-up phenomenon of myotonic disorders? Lossin C Muscle Nerve; 2013 Apr; 47(4):483-7. PubMed ID: 23381896 [TBL] [Abstract][Full Text] [Related]
11. A novel Ile1455Thr variant in the skeletal muscle sodium channel alpha-subunit in a patient with a severe adult-onset proximal myopathy with electrical myotonia and a patient with mild paramyotonia phenotype. Bednarz M; Stunnenberg BC; Kusters B; Kamsteeg EJ; Saris CG; Groome J; Winston V; Meola G; Jurkat-Rott K; Voermans NC Neuromuscul Disord; 2017 Feb; 27(2):175-182. PubMed ID: 28024841 [TBL] [Abstract][Full Text] [Related]
12. Excitability properties of mouse and human skeletal muscle fibres compared by muscle velocity recovery cycles. Suetterlin KJ; Männikkö R; Matthews E; Greensmith L; Hanna MG; Bostock H; Tan SV Neuromuscul Disord; 2022 Apr; 32(4):347-357. PubMed ID: 35339342 [TBL] [Abstract][Full Text] [Related]
13. A zebrafish model of nondystrophic myotonia with sodium channelopathy. Nam TS; Zhang J; Chandrasekaran G; Jeong IY; Li W; Lee SH; Kang KW; Maeng JS; Kang H; Shin HY; Park HC; Kim S; Choi SY; Kim MK Neurosci Lett; 2020 Jan; 714():134579. PubMed ID: 31669315 [TBL] [Abstract][Full Text] [Related]