BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28878236)

  • 1. Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge.
    Achlatis M; van der Zande RM; Schönberg CHL; Fang JKH; Hoegh-Guldberg O; Dove S
    Sci Rep; 2017 Sep; 7(1):10705. PubMed ID: 28878236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sponge biomass and bioerosion rates increase under ocean warming and acidification.
    Fang JK; Mello-Athayde MA; Schönberg CH; Kline DI; Hoegh-Guldberg O; Dove S
    Glob Chang Biol; 2013 Dec; 19(12):3581-91. PubMed ID: 23893528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ocean warming and acidification on the energy budget of an excavating sponge.
    Fang JK; Schönberg CH; Mello-Athayde MA; Hoegh-Guldberg O; Dove S
    Glob Chang Biol; 2014 Apr; 20(4):1043-54. PubMed ID: 23966358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming.
    Ramsby BD; Hoogenboom MO; Smith HA; Whalan S; Webster NS
    Sci Rep; 2018 May; 8(1):8302. PubMed ID: 29844349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bleaching and mortality of a photosymbiotic bioeroding sponge under future carbon dioxide emission scenarios.
    Fang JKH; Schönberg CHL; Mello-Athayde MA; Achlatis M; Hoegh-Guldberg O; Dove S
    Oecologia; 2018 May; 187(1):25-35. PubMed ID: 29574578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocean acidification accelerates reef bioerosion.
    Wisshak M; Schönberg CH; Form A; Freiwald A
    PLoS One; 2012; 7(9):e45124. PubMed ID: 23028797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coral.
    Stubler AD; Furman BT; Peterson BJ
    Glob Chang Biol; 2015 Nov; 21(11):4006-20. PubMed ID: 26087148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs.
    Chaves-Fonnegra A; Riegl B; Zea S; Lopez JV; Smith T; Brandt M; Gilliam DS
    Glob Chang Biol; 2018 Feb; 24(2):773-785. PubMed ID: 29076634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH Regulation and Tissue Coordination Pathways Promote Calcium Carbonate Bioerosion by Excavating Sponges.
    Webb AE; Pomponi SA; van Duyl FC; Reichart GJ; de Nooijer LJ
    Sci Rep; 2019 Jan; 9(1):758. PubMed ID: 30679551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao.
    de Bakker DM; Webb AE; van den Bogaart LA; van Heuven SMAC; Meesters EH; van Duyl FC
    PLoS One; 2018; 13(5):e0197824. PubMed ID: 29847572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptomics reveals altered species interaction between the bioeroding sponge Cliona varians and the coral Porites furcata under ocean acidification.
    DeBiasse MB; Stubler AD; Kelly MW
    Mol Ecol; 2022 May; 31(10):3002-3017. PubMed ID: 35303383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Could some coral reefs become sponge reefs as our climate changes?
    Bell JJ; Davy SK; Jones T; Taylor MW; Webster NS
    Glob Chang Biol; 2013 Sep; 19(9):2613-24. PubMed ID: 23553821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influences of diurnal variability and ocean acidification on the bioerosion rates of two reef-dwelling Caribbean sponges.
    Morris J; Enochs I; Webb A; de Bakker D; Soderberg N; Kolodziej G; Manzello D
    Glob Chang Biol; 2022 Dec; 28(23):7126-7138. PubMed ID: 36129389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs.
    Nava H; Carballo JL
    J Exp Biol; 2008 Sep; 211(Pt 17):2827-31. PubMed ID: 18723541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell measurement of ammonium and bicarbonate uptake within a photosymbiotic bioeroding sponge.
    Achlatis M; Pernice M; Green K; Guagliardo P; Kilburn MR; Hoegh-Guldberg O; Dove S
    ISME J; 2018 May; 12(5):1308-1318. PubMed ID: 29386628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical versus mechanical bioerosion of coral reefs by boring sponges--lessons from Pione cf. vastifica.
    Zundelevich A; Lazar B; Ilan M
    J Exp Biol; 2007 Jan; 210(Pt 1):91-6. PubMed ID: 17170152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A decadal analysis of bioeroding sponge cover on the inshore Great Barrier Reef.
    Ramsby BD; Hoogenboom MO; Whalan S; Webster NS; Thompson A
    Sci Rep; 2017 Jun; 7(1):2706. PubMed ID: 28578420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactive effects of temperature and pCO
    Bennett HM; Altenrath C; Woods L; Davy SK; Webster NS; Bell JJ
    Glob Chang Biol; 2017 May; 23(5):2031-2046. PubMed ID: 27550825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation.
    Stevenson A; Archer SK; Schultz JA; Dunham A; Marliave JB; Martone P; Harley CDG
    Sci Rep; 2020 May; 10(1):8176. PubMed ID: 32424237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios.
    Bennett H; Bell JJ; Davy SK; Webster NS; Francis DS
    Glob Chang Biol; 2018 Jul; 24(7):3130-3144. PubMed ID: 29505691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.