These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 28878273)
1. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. Jin Y; Zhou G; Shi F; Zhuo D; Zhao J; Liu K; Liu Y; Zu C; Chen W; Zhang R; Huang X; Cui Y Nat Commun; 2017 Sep; 8(1):462. PubMed ID: 28878273 [TBL] [Abstract][Full Text] [Related]
2. Synergistically Enhanced Polysulfide Chemisorption Using a Flexible Hybrid Separator with N and S Dual-Doped Mesoporous Carbon Coating for Advanced Lithium-Sulfur Batteries. Balach J; Singh HK; Gomoll S; Jaumann T; Klose M; Oswald S; Richter M; Eckert J; Giebeler L ACS Appl Mater Interfaces; 2016 Jun; 8(23):14586-95. PubMed ID: 27225061 [TBL] [Abstract][Full Text] [Related]
3. Designing high-energy lithium-sulfur batteries. Seh ZW; Sun Y; Zhang Q; Cui Y Chem Soc Rev; 2016 Oct; 45(20):5605-5634. PubMed ID: 27460222 [TBL] [Abstract][Full Text] [Related]
4. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries. Liu Z; Zhou L; Ge Q; Chen R; Ni M; Utetiwabo W; Zhang X; Yang W ACS Appl Mater Interfaces; 2018 Jun; 10(23):19311-19317. PubMed ID: 29800511 [TBL] [Abstract][Full Text] [Related]
5. Three-Dimensionally Hierarchical Ni/Ni Li Z; Zhang S; Zhang J; Xu M; Tatara R; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2017 Nov; 9(44):38477-38485. PubMed ID: 29035508 [TBL] [Abstract][Full Text] [Related]
6. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries. Chen L; Liu Y; Zhang F; Liu C; Shaw LL ACS Appl Mater Interfaces; 2015 Nov; 7(46):25748-56. PubMed ID: 26529481 [TBL] [Abstract][Full Text] [Related]
7. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
8. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte. Liu M; Ren Y; Zhou D; Jiang H; Kang F; Zhao T ACS Appl Mater Interfaces; 2017 Jan; 9(3):2526-2534. PubMed ID: 28026937 [TBL] [Abstract][Full Text] [Related]
9. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption. Pang Q; Nazar LF ACS Nano; 2016 Apr; 10(4):4111-8. PubMed ID: 26841116 [TBL] [Abstract][Full Text] [Related]
10. Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy-High Power Lithium-Sulfur Batteries. Xie K; Yuan K; Zhang K; Shen C; Lv W; Liu X; Wang JG; Wei B ACS Appl Mater Interfaces; 2017 Feb; 9(5):4605-4613. PubMed ID: 28084721 [TBL] [Abstract][Full Text] [Related]
11. A highly efficient polysulfide mediator for lithium-sulfur batteries. Liang X; Hart C; Pang Q; Garsuch A; Weiss T; Nazar LF Nat Commun; 2015 Jan; 6():5682. PubMed ID: 25562485 [TBL] [Abstract][Full Text] [Related]
12. Directing the Lithium-Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries. Lee CW; Pang Q; Ha S; Cheng L; Han SD; Zavadil KR; Gallagher KG; Nazar LF; Balasubramanian M ACS Cent Sci; 2017 Jun; 3(6):605-613. PubMed ID: 28691072 [TBL] [Abstract][Full Text] [Related]
13. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries. Zu C; Klein M; Manthiram A J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482 [TBL] [Abstract][Full Text] [Related]
14. Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries. Gao J; Abruña HD J Phys Chem Lett; 2014 Mar; 5(5):882-5. PubMed ID: 26274082 [TBL] [Abstract][Full Text] [Related]
15. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte. Yu X; Bi Z; Zhao F; Manthiram A ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547 [TBL] [Abstract][Full Text] [Related]
16. Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery. Lu Y; Gu S; Guo J; Rui K; Chen C; Zhang S; Jin J; Yang J; Wen Z ACS Appl Mater Interfaces; 2017 May; 9(17):14878-14888. PubMed ID: 28406612 [TBL] [Abstract][Full Text] [Related]
17. Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. Lang SY; Xiao RJ; Gu L; Guo YG; Wen R; Wan LJ J Am Chem Soc; 2018 Jul; 140(26):8147-8155. PubMed ID: 29883104 [TBL] [Abstract][Full Text] [Related]
18. Minimizing Polysulfide Shuttle Effect in Lithium-Ion Sulfur Batteries by Anode Surface Passivation. Liu J; Lu D; Zheng J; Yan P; Wang B; Sun X; Shao Y; Wang C; Xiao J; Zhang JG; Liu J ACS Appl Mater Interfaces; 2018 Jul; 10(26):21965-21972. PubMed ID: 29879356 [TBL] [Abstract][Full Text] [Related]
19. High-Rate and Long-Term Cycle Stability of Li-S Batteries Enabled by Li Wang X; Bi X; Wang S; Zhang Y; Du H; Lu J ACS Appl Mater Interfaces; 2018 May; 10(19):16552-16560. PubMed ID: 29671567 [TBL] [Abstract][Full Text] [Related]
20. Efficient Encapsulation of Small S Hong XJ; Tang XY; Wei Q; Song CL; Wang SY; Dong RF; Cai YP; Si LP ACS Appl Mater Interfaces; 2018 Mar; 10(11):9435-9443. PubMed ID: 29528216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]