These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 28878332)

  • 1. Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials.
    Song K; Su Z; Wang M; Silva S; Bhattarai K; Ding C; Liu Y; Luo C; Zhao X; Zhou J
    Sci Rep; 2017 Sep; 7(1):10730. PubMed ID: 28878332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nondispersive optical activity of meshed helical metamaterials.
    Park HS; Kim TT; Kim HD; Kim K; Min B
    Nat Commun; 2014 Nov; 5():5435. PubMed ID: 25399631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion-free broadband optical polarization rotation based on helix photonic metamaterials.
    Li YR; Hung YC
    Opt Express; 2015 Jun; 23(13):16772-81. PubMed ID: 26191689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrinsic optical activity in all-dielectric terahertz metamaterial.
    Yang S; Li Y; Chen X; Yang Q; Han J; Zhang W
    Opt Lett; 2020 Nov; 45(22):6146-6149. PubMed ID: 33186936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband circular polarizers constructed using helix-like chiral metamaterials.
    Ji R; Wang SW; Liu X; Chen X; Lu W
    Nanoscale; 2016 Aug; 8(31):14725-9. PubMed ID: 27352818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-Based Absorption-Transmission Multi-Functional Tunable THz Metamaterials.
    Zhuang S; Li X; Yang T; Sun L; Kosareva O; Gong C; Liu W
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral metamaterials: enhancement and control of optical activity and circular dichroism.
    Oh SS; Hess O
    Nano Converg; 2015; 2(1):24. PubMed ID: 28191410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical activity enhanced by strong inter-molecular coupling in planar chiral metamaterials.
    Kim TT; Oh SS; Park HS; Zhao R; Kim SH; Choi W; Min B; Hess O
    Sci Rep; 2014 Sep; 4():5864. PubMed ID: 25209452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral metamaterials: retrieval of the effective parameters with and without substrate.
    Zhao R; Koschny T; Soukoulis CM
    Opt Express; 2010 Jul; 18(14):14553-67. PubMed ID: 20639941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking.
    Chen Y; Gao J; Yang X
    Nano Lett; 2018 Jan; 18(1):520-527. PubMed ID: 29206469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intensity-dependent modulation of optically active signals in a chiral metamaterial.
    Rodrigues SP; Lan S; Kang L; Cui Y; Panuski PW; Wang S; Urbas AM; Cai W
    Nat Commun; 2017 Feb; 8():. PubMed ID: 28240288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide-angle, polarization-insensitive, and broadband metamaterial absorber based on multilayered metal-dielectric structures.
    Liu P; Lan T
    Appl Opt; 2017 May; 56(14):4201-4205. PubMed ID: 29047556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-broadband and high-efficiency planar chiral metamaterial.
    Hussain S; Liu Q; Maroof Z; Ji R; Wang S
    Opt Lett; 2022 Nov; 47(21):5700-5703. PubMed ID: 37219307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active perfect absorber based on planar anisotropic chiral metamaterials.
    Yang X; Li M; Hou Y; Du J; Gao F
    Opt Express; 2019 Mar; 27(5):6801-6814. PubMed ID: 30876258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials.
    Kilic U; Hilfiker M; Wimer S; Ruder A; Schubert E; Schubert M; Argyropoulos C
    Nat Commun; 2024 May; 15(1):3757. PubMed ID: 38704375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband metamaterial for nonresonant matching of acoustic waves.
    D'Aguanno G; Le KQ; Trimm R; Alù A; Mattiucci N; Mathias AD; Aközbek N; Bloemer MJ
    Sci Rep; 2012; 2():340. PubMed ID: 22468227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances.
    Wu C; Arju N; Kelp G; Fan JA; Dominguez J; Gonzales E; Tutuc E; Brener I; Shvets G
    Nat Commun; 2014 May; 5():3892. PubMed ID: 24861488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties.
    Prinz VY; Naumova EV; Golod SV; Seleznev VA; Bocharov AA; Kubarev VV
    Sci Rep; 2017 Mar; 7():43334. PubMed ID: 28256587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angle enhanced circular dichroism in bilayer 90°-twisted metamaterial.
    Lai P; Dong G; Wang W; Chen T; Lv T; Lv B; Zhu Z; Li Y; Guan C; Shi J
    Opt Express; 2020 May; 28(10):15071-15080. PubMed ID: 32403540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.