These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28878642)

  • 1. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware.
    Stöckel A; Jenzen C; Thies M; Rückert U
    Front Comput Neurosci; 2017; 11():71. PubMed ID: 28878642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking Neuromorphic Hardware and Its Energy Expenditure.
    Ostrau C; Klarhorst C; Thies M; Rückert U
    Front Neurosci; 2022; 16():873935. PubMed ID: 35720731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking neuromorphic systems with Nengo.
    Bekolay T; Stewart TC; Eliasmith C
    Front Neurosci; 2015; 9():380. PubMed ID: 26539076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Digital Neuromorphic Architecture for Large-Scale Biophysically Meaningful Neural Network With Multi-Compartment Neurons.
    Yang S; Deng B; Wang J; Li H; Lu M; Che Y; Wei X; Loparo KA
    IEEE Trans Neural Netw Learn Syst; 2020 Jan; 31(1):148-162. PubMed ID: 30892250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning With Spiking Neurons: Opportunities and Challenges.
    Pfeiffer M; Pfeil T
    Front Neurosci; 2018; 12():774. PubMed ID: 30410432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
    Knight JC; Tully PJ; Kaplan BA; Lansner A; Furber SB
    Front Neuroanat; 2016; 10():37. PubMed ID: 27092061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.
    Diamond A; Nowotny T; Schmuker M
    Front Neurosci; 2015; 9():491. PubMed ID: 26778950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time cortical simulation on neuromorphic hardware.
    Rhodes O; Peres L; Rowley AGD; Gait A; Plana LA; Brenninkmeijer C; Furber SB
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2164):20190160. PubMed ID: 31865885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond LIF Neurons on Neuromorphic Hardware.
    Ward M; Rhodes O
    Front Neurosci; 2022; 16():881598. PubMed ID: 35864984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics.
    Steffen L; Koch R; Ulbrich S; Nitzsche S; Roennau A; Dillmann R
    Front Neurosci; 2021; 15():667011. PubMed ID: 34267622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromorphic Analog Implementation of Neural Engineering Framework-Inspired Spiking Neuron for High-Dimensional Representation.
    Hazan A; Ezra Tsur E
    Front Neurosci; 2021; 15():627221. PubMed ID: 33692670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Event management for large scale event-driven digital hardware spiking neural networks.
    Caron LC; D'Haene M; Mailhot F; Schrauwen B; Rouat J
    Neural Netw; 2013 Sep; 45():83-93. PubMed ID: 23522624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.
    Stefanini F; Neftci EO; Sheik S; Indiveri G
    Front Neuroinform; 2014; 8():73. PubMed ID: 25232314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Connection Between Binary and Spiking Neural Networks.
    Lu S; Sengupta A
    Front Neurosci; 2020; 14():535. PubMed ID: 32670002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model.
    Lee YJ; On MB; Xiao X; Proietti R; Yoo SJB
    Opt Express; 2022 May; 30(11):19360-19389. PubMed ID: 36221716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Materials for Neuromorphic Devices and Systems.
    Kim MK; Park Y; Kim IJ; Lee JS
    iScience; 2020 Dec; 23(12):101846. PubMed ID: 33319174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.