BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28878737)

  • 21. Primary structure and function of three gonadotropin-releasing hormones, including a novel form, from an ancient teleost, herring.
    Carolsfeld J; Powell JF; Park M; Fischer WH; Craig AG; Chang JP; Rivier JE; Sherwood NM
    Endocrinology; 2000 Feb; 141(2):505-12. PubMed ID: 10650929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gonadotropin-releasing hormone in invertebrates: structure, function, and evolution.
    Tsai PS
    Gen Comp Endocrinol; 2006 Aug; 148(1):48-53. PubMed ID: 16256989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and conformational properties of protein fragments based on the Id family of DNA-binding and cell-differentiation inhibitors.
    Kiewitz SD; Cabrele C
    Biopolymers; 2005; 80(6):762-74. PubMed ID: 15880794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intermedin, a novel calcitonin family peptide that exists in teleosts as well as in mammals: a comparison with other calcitonin/intermedin family peptides in vertebrates.
    Chang CL; Roh J; Hsu SY
    Peptides; 2004 Oct; 25(10):1633-42. PubMed ID: 15476930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning and expression, pharmacological characterization, and internalization kinetics of the pituitary GnRH receptor in a metatherian species of mammal.
    King JA; Fidler A; Lawrence S; Adam T; Millar RP; Katz A
    Gen Comp Endocrinol; 2000 Mar; 117(3):439-48. PubMed ID: 10764554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gonadotropin-releasing hormone genes: phylogeny, structure, and functions.
    Fernald RD; White RB
    Front Neuroendocrinol; 1999 Jul; 20(3):224-40. PubMed ID: 10433863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary growth process of highly conserved sequences in vertebrate genomes.
    Ishibashi M; Noda AO; Sakate R; Imanishi T
    Gene; 2012 Aug; 504(1):1-5. PubMed ID: 22580082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Switching from the unfolded to the folded state of the helix-loop-helix domain of the Id proteins based on the O-acyl isopeptide method.
    Kiewitz SD; Kakizawa T; Kiso Y; Cabrele C
    J Pept Sci; 2008 Nov; 14(11):1209-15. PubMed ID: 18636401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of two new preproGnRH mRNAs in the tree shrew: first direct evidence for mesencephalic GnRH gene expression in a placental mammal.
    Kasten TL; White SA; Norton TT; Bond CT; Adelman JP; Fernald RD
    Gen Comp Endocrinol; 1996 Oct; 104(1):7-19. PubMed ID: 8921350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary origin and divergence of GnIH and its homologous peptides.
    Tsutsui K; Osugi T
    Gen Comp Endocrinol; 2009 Mar; 161(1):30-3. PubMed ID: 18952088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Four gonadotropin releasing hormone receptor genes in Atlantic cod are differentially expressed in the brain and pituitary during puberty.
    Hildahl J; Sandvik GK; Edvardsen RB; Norberg B; Haug TM; Weltzien FA
    Gen Comp Endocrinol; 2011 Sep; 173(2):333-45. PubMed ID: 21704626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes.
    Harduin-Lepers A; Petit D; Mollicone R; Delannoy P; Petit JM; Oriol R
    BMC Evol Biol; 2008 Sep; 8():258. PubMed ID: 18811928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional cooperation between multiple regulatory elements in the untranslated exon 1 stimulates the basal transcription of the human GnRH-II gene.
    Cheng CK; Hoo RL; Chow BK; Leung PC
    Mol Endocrinol; 2003 Jul; 17(7):1175-91. PubMed ID: 12663744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular and functional characterization of a novel gonadotropin-releasing-hormone receptor isolated from the common octopus (Octopus vulgaris).
    Kanda A; Takahashi T; Satake H; Minakata H
    Biochem J; 2006 Apr; 395(1):125-35. PubMed ID: 16367741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning, tissue distribution, and ontogeny of gonadotropin-releasing hormone III gene (GnRH-III) in half-smooth tongue sole (Cynoglossus semilaevis).
    Zhou X; Yi Q; Zhong Q; Li C; Muhammad S; Wang X; Wang Z; Qi J; Yu H; Zhang Q
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Sep; 163(1):59-64. PubMed ID: 22580269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic structure and expression sites of three gonadotropin-releasing hormone genes in one species.
    White RB; Fernald RD
    Gen Comp Endocrinol; 1998 Oct; 112(1):17-25. PubMed ID: 9748399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophysiological characteristics of gonadotrophin-releasing hormone 1-3 neurones: insights from a study of fish brains.
    Oka Y
    J Neuroendocrinol; 2010 Jul; 22(7):659-63. PubMed ID: 20646172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a corticotropin-releasing factor (CRF)/diuretic hormone-like peptide from tunicates: insight into the origins of the vertebrate CRF family.
    Lovejoy DA; Barsyte-Lovejoy D
    Gen Comp Endocrinol; 2010 Jan; 165(2):330-6. PubMed ID: 19646444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular cloning and gene expression of the gonadotropin-releasing hormone receptor in the orange-spotted grouper, Epinephelus coioides.
    Hsieh SL; Chuang HC; Nan FH; Ruan YH; Kuo CM
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jun; 147(2):209-21. PubMed ID: 17329139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure activity relationships of peptidic analogs of MyoD for the development of Id1 inhibitors as antiproliferative agents.
    Hsiao YC; Yang DL; Hung HL; Lung FD
    J Pept Sci; 2013 Nov; 19(11):676-83. PubMed ID: 24123584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.