These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 28878968)
21. The leading-edge vortex on a rotating wing changes markedly beyond a certain central body size. Bhat SS; Zhao J; Sheridan J; Hourigan K; Thompson MC R Soc Open Sci; 2018 Jul; 5(7):172197. PubMed ID: 30109056 [TBL] [Abstract][Full Text] [Related]
22. Capturing wake capture: a 2D numerical investigation into wing-wake interaction aerodynamics. Li H; Nabawy MRA Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36215970 [TBL] [Abstract][Full Text] [Related]
23. Lift production in the hovering hummingbird. Warrick DR; Tobalske BW; Powers DR Proc Biol Sci; 2009 Nov; 276(1674):3747-52. PubMed ID: 19656789 [TBL] [Abstract][Full Text] [Related]
24. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles. Zbikowski R Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181 [TBL] [Abstract][Full Text] [Related]
25. Wing Planform Effect on the Aerodynamics of Insect Wings. Li H; Nabawy MRA Insects; 2022 May; 13(5):. PubMed ID: 35621794 [TBL] [Abstract][Full Text] [Related]
26. Leading edge vortices in lesser long-nosed bats occurring at slow but not fast flight speeds. Muijres FT; Christoffer Johansson L; Winter Y; Hedenström A Bioinspir Biomim; 2014 Jun; 9(2):025006. PubMed ID: 24855067 [TBL] [Abstract][Full Text] [Related]
27. Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating mahogany seed (Swietenia macrophylla). Salcedo E; Treviño C; Vargas RO; Martínez-Suástegui L J Exp Biol; 2013 Jun; 216(Pt 11):2017-30. PubMed ID: 23430990 [TBL] [Abstract][Full Text] [Related]
28. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Kruyt JW; van Heijst GF; Altshuler DL; Lentink D J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539 [TBL] [Abstract][Full Text] [Related]
29. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing. Winzen A; Roidl B; Schröder W Bioinspir Biomim; 2015 Sep; 10(5):056009. PubMed ID: 26372422 [TBL] [Abstract][Full Text] [Related]
30. Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings. Jardin T; David L Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013011. PubMed ID: 25122373 [TBL] [Abstract][Full Text] [Related]
31. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing. Winzen A; Roidl B; Schröder W Bioinspir Biomim; 2016 Apr; 11(2):026005. PubMed ID: 27033298 [TBL] [Abstract][Full Text] [Related]
33. The aerodynamic effects of wing-wing interaction in flapping insect wings. Lehmann FO; Sane SP; Dickinson M J Exp Biol; 2005 Aug; 208(Pt 16):3075-92. PubMed ID: 16081606 [TBL] [Abstract][Full Text] [Related]
34. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight. Wang J; Ren Y; Li C; Dong H Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194 [TBL] [Abstract][Full Text] [Related]
35. Feather roughness reduces flow separation during low Reynolds number glides of swifts. van Bokhorst E; de Kat R; Elsinga GE; Lentink D J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563 [TBL] [Abstract][Full Text] [Related]
36. Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing. Linehan T; Mohseni K Sci Rep; 2020 May; 10(1):7905. PubMed ID: 32404925 [TBL] [Abstract][Full Text] [Related]
37. Quasi-steady aerodynamic modeling and dynamic stability of mosquito-inspired flapping wing pico aerial vehicle. Singh B; Ahmad KA; Murugaiah M; Yidris N; Basri AA; Pai R Front Robot AI; 2024; 11():1362206. PubMed ID: 38774469 [TBL] [Abstract][Full Text] [Related]
38. Time-resolved vortex wake of a common swift flying over a range of flight speeds. Henningsson P; Muijres FT; Hedenström A J R Soc Interface; 2011 Jun; 8(59):807-16. PubMed ID: 21131333 [TBL] [Abstract][Full Text] [Related]
39. Ground effect on the aerodynamics of three-dimensional hovering wings. Lu H; Lua KB; Lee YJ; Lim TT; Yeo KS Bioinspir Biomim; 2016 Oct; 11(6):066003. PubMed ID: 27780156 [TBL] [Abstract][Full Text] [Related]
40. Computational investigation of cicada aerodynamics in forward flight. Wan H; Dong H; Gai K J R Soc Interface; 2015 Jan; 12(102):20141116. PubMed ID: 25551136 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]