These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 28878968)
41. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect. Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351 [TBL] [Abstract][Full Text] [Related]
42. Research on the aerodynamic characteristics of dragonfly leading edge. Hu Y; Zhu C; Liu Q; Zhu D; Xue J; Li Q; Zhou X Microsc Res Tech; 2025 Jan; 88(1):181-201. PubMed ID: 39257069 [TBL] [Abstract][Full Text] [Related]
43. Wing Design in Flies: Properties and Aerodynamic Function. Krishna S; Cho M; Wehmann HN; Engels T; Lehmann FO Insects; 2020 Jul; 11(8):. PubMed ID: 32718051 [TBL] [Abstract][Full Text] [Related]
44. Enhancing Energy Harvesting Efficiency of Flapping Wings with Leading-Edge Magnus Effect Cylinder. Zhang H; Zhu B; Chen W Biomimetics (Basel); 2024 May; 9(5):. PubMed ID: 38786503 [TBL] [Abstract][Full Text] [Related]
45. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency. Thielicke W; Stamhuis EJ Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756 [TBL] [Abstract][Full Text] [Related]
46. THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS. Dickinson M J Exp Biol; 1994 Jul; 192(1):179-206. PubMed ID: 9317589 [TBL] [Abstract][Full Text] [Related]
47. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. Birch JM; Dickinson MH J Exp Biol; 2003 Jul; 206(Pt 13):2257-72. PubMed ID: 12771174 [TBL] [Abstract][Full Text] [Related]
48. Leading-edge vortex improves lift in slow-flying bats. Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085 [TBL] [Abstract][Full Text] [Related]
49. Decoupling wing-shape effects of wing-swept angle and aspect ratio on a forward-flying butterfly. Chang SK; Lin YJ; Hsu KL; Yang JT Phys Rev E; 2023 Jun; 107(6-2):065105. PubMed ID: 37464647 [TBL] [Abstract][Full Text] [Related]
50. Flapping wing aerodynamics: from insects to vertebrates. Chin DD; Lentink D J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773 [TBL] [Abstract][Full Text] [Related]
51. On the lift-optimal aspect ratio of a revolving wing at low Reynolds number. Jardin T; Colonius T J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29925578 [TBL] [Abstract][Full Text] [Related]
52. The fish tail motion forms an attached leading edge vortex. Borazjani I; Daghooghi M Proc Biol Sci; 2013 Apr; 280(1756):20122071. PubMed ID: 23407826 [TBL] [Abstract][Full Text] [Related]
54. The Aerodynamic Effect of an Alula-like Vortex Generator on a Revolving Wing. Chung PH; Chang PH; Yeh SI Biomimetics (Basel); 2022 Sep; 7(3):. PubMed ID: 36134932 [TBL] [Abstract][Full Text] [Related]
55. Automatic aeroelastic devices in the wings of a steppe eagle Aquila nipalensis. Carruthers AC; Thomas AL; Taylor GK J Exp Biol; 2007 Dec; 210(Pt 23):4136-49. PubMed ID: 18025013 [TBL] [Abstract][Full Text] [Related]
56. Flexible flapping wings with self-organized microwrinkles. Tanaka H; Okada H; Shimasue Y; Liu H Bioinspir Biomim; 2015 Jun; 10(4):046005. PubMed ID: 26119657 [TBL] [Abstract][Full Text] [Related]
57. Flying in reverse: kinematics and aerodynamics of a dragonfly in backward free flight. Bode-Oke AT; Zeyghami S; Dong H J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29950513 [TBL] [Abstract][Full Text] [Related]
59. Flow structure modifications by leading-edge tubercles on a 3D wing. Kim H; Kim J; Choi H Bioinspir Biomim; 2018 Oct; 13(6):066011. PubMed ID: 30362460 [TBL] [Abstract][Full Text] [Related]