These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28879230)

  • 41. Space-time focusing in a highly multimode fiber via optical pulse shaping.
    Liu B; Weiner AM
    Opt Lett; 2018 Oct; 43(19):4675-4678. PubMed ID: 30272712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Blind focusing through strongly scattering media using wavefront shaping with nonlinear feedback.
    Osnabrugge G; Amitonova LV; Vellekoop IM
    Opt Express; 2019 Apr; 27(8):11673-11688. PubMed ID: 31053010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes.
    Yu H; Lee K; Park Y
    Opt Express; 2017 Apr; 25(7):8036-8047. PubMed ID: 28380926
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging.
    Brasselet S; Aït-Belkacem D; Gasecka A; Munhoz F; Brustlein S; Brasselet S
    Opt Express; 2010 Jul; 18(14):14859-70. PubMed ID: 20639973
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33,000× optical power gain.
    Ma C; Xu X; Wang LV
    Sci Rep; 2015 Mar; 5():8896. PubMed ID: 25753905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Scanning a focus through scattering media without using the optical memory effect.
    Mastiani B; Ohn TL; Vellekoop IM
    Opt Lett; 2019 Nov; 44(21):5226-5229. PubMed ID: 31674974
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Matrix Fourier optics enables a compact full-Stokes polarization camera.
    Rubin NA; D'Aversa G; Chevalier P; Shi Z; Chen WT; Capasso F
    Science; 2019 Jul; 365(6448):. PubMed ID: 31273096
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recovery of wave-mixing conversion efficiency in weakly scattering nonlinear crystals.
    Wang Z; Qiao Y; Yan S; Wu H; Zheng Y; Chen X
    Opt Lett; 2018 Aug; 43(15):3734-3737. PubMed ID: 30067667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light.
    Liu Y; Lai P; Ma C; Xu X; Grabar AA; Wang LV
    Nat Commun; 2015 Jan; 6():5904. PubMed ID: 25556918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterizing the depolarization of circularly polarized light in turbid scattering media.
    Macdonald CM
    J Opt Soc Am A Opt Image Sci Vis; 2018 Dec; 35(12):2104-2110. PubMed ID: 30645285
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial orientation mapping of fibers using polarization-sensitive second harmonic generation microscopy.
    Hovhannisyan VA; Hu PS; Tan HY; Chen SJ; Dong CY
    J Biophotonics; 2012 Oct; 5(10):768-76. PubMed ID: 22331651
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb.
    Wei X; Shen Y; Jing JC; Hemphill AS; Yang C; Xu S; Yang Z; Wang LV
    Sci Adv; 2020 Feb; 6(8):eaay1192. PubMed ID: 32128401
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coherence and polarization of light propagating through scattering media and biological tissues.
    Jarry G; Steimer E; Damaschini V; Epifanie M; Jurczak M; Kaiser R
    Appl Opt; 1998 Nov; 37(31):7357-67. PubMed ID: 18301570
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polarization-difference imaging: a biologically inspired technique for observation through scattering media.
    Rowe MP; Pugh EN; Tyo JS; Engheta N
    Opt Lett; 1995 Mar; 20(6):608-10. PubMed ID: 19859271
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shaping the branched flow of light through disordered media.
    Brandstötter A; Girschik A; Ambichl P; Rotter S
    Proc Natl Acad Sci U S A; 2019 Jul; 116(27):13260-13265. PubMed ID: 31213537
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of polarization state and scatterer concentration on optical imaging through scattering media.
    Morgan SP; Khong MP; Somekh MG
    Appl Opt; 1997 Mar; 36(7):1560-5. PubMed ID: 18250835
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polarization anisotropy in fiber-optic second harmonic generation microscopy.
    Fu L; Gu M
    Opt Express; 2008 Mar; 16(7):5000-6. PubMed ID: 18542600
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving photoacoustic-guided optical focusing in scattering media by spectrally filtered detection.
    Chaigne T; Gateau J; Katz O; Boccara C; Gigan S; Bossy E
    Opt Lett; 2014 Oct; 39(20):6054-7. PubMed ID: 25361154
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy.
    Yasui T; Takahashi Y; Fukushima S; Ogura Y; Yamashita T; Kuwahara T; Hirao T; Araki T
    Opt Express; 2009 Jan; 17(2):912-23. PubMed ID: 19158906
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical characterization of rigid endoscopes and polarization calibration methods.
    Garcia M; Gruev V
    Opt Express; 2017 Jul; 25(14):15713-15728. PubMed ID: 28789084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.