BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28879681)

  • 1. Aromatic Halogenation by Using Bifunctional Flavin Reductase-Halogenase Fusion Enzymes.
    Andorfer MC; Belsare KD; Girlich AM; Lewis JC
    Chembiochem; 2017 Nov; 18(21):2099-2103. PubMed ID: 28879681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavin Adenine Dinucleotide-Dependent Halogenase XanH and Engineering of Multifunctional Fusion Halogenases.
    Kong L; Wang Q; Deng Z; You D
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding and Improving the Activity of Flavin-Dependent Halogenases via Random and Targeted Mutagenesis.
    Andorfer MC; Lewis JC
    Annu Rev Biochem; 2018 Jun; 87():159-185. PubMed ID: 29589959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tri-enzyme fusion of tryptophan halogenase achieves a concise strategy for coenzyme self-sufficiency and the continuous halogenation of L-tryptophan.
    Liu HY; Qian F; Zhang HM; Gui Q; Wang YW; Wang P
    Biotechnol J; 2024 Apr; 19(4):e2300557. PubMed ID: 38581092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli.
    Lee J; Kim J; Song JE; Song WS; Kim EJ; Kim YG; Jeong HJ; Kim HR; Choi KY; Kim BG
    Nat Chem Biol; 2021 Jan; 17(1):104-112. PubMed ID: 33139950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Single-Component Flavin Reductase/Flavin-Dependent Halogenase AetF is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins.
    Jiang Y; Snodgrass HM; Zubi YS; Roof CV; Guan Y; Mondal D; Honeycutt NH; Lee JW; Lewis RD; Martinez CA; Lewis JC
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202214610. PubMed ID: 36282507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halogenase Engineering for the Generation of New Natural Product Analogues.
    Brown S; O'Connor SE
    Chembiochem; 2015 Oct; 16(15):2129-35. PubMed ID: 26256103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures, mechanisms and applications of flavin-dependent halogenases.
    Phintha A; Prakinee K; Chaiyen P
    Enzymes; 2020; 47():327-364. PubMed ID: 32951827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes.
    Menon BR; Latham J; Dunstan MS; Brandenburger E; Klemstein U; Leys D; Karthikeyan C; Greaney MF; Shepherd SA; Micklefield J
    Org Biomol Chem; 2016 Oct; 14(39):9354-9361. PubMed ID: 27714222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombinant flavin-dependent halogenases are functional in tobacco chloroplasts without co-expression of flavin reductase genes.
    Fräbel S; Krischke M; Staniek A; Warzecha H
    Biotechnol J; 2016 Dec; 11(12):1586-1594. PubMed ID: 27687297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional assembly of camphor converting two-component Baeyer-Villiger monooxygenases with a flavin reductase from E. coli.
    Kadow M; Balke K; Willetts A; Bornscheuer UT; Bäckvall JE
    Appl Microbiol Biotechnol; 2014 May; 98(9):3975-86. PubMed ID: 24190498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric catalysis by flavin-dependent halogenases.
    Jiang Y; Lewis JC
    Chirality; 2023 Aug; 35(8):452-460. PubMed ID: 36916449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regioselective arene halogenation using the FAD-dependent halogenase RebH.
    Payne JT; Andorfer MC; Lewis JC
    Angew Chem Int Ed Engl; 2013 May; 52(20):5271-4. PubMed ID: 23592388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavin-dependent halogenases catalyze enantioselective olefin halocyclization.
    Mondal D; Fisher BF; Jiang Y; Lewis JC
    Nat Commun; 2021 Jun; 12(1):3268. PubMed ID: 34075034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Flavin-Dependent Halogenases.
    Payne JT; Andorfer MC; Lewis JC
    Methods Enzymol; 2016; 575():93-126. PubMed ID: 27417926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic Determinants Encode the Reactivity and Regioselectivity of Flavin-Dependent Halogenases in Bacterial Genomes and Metagenomes.
    Jeon J; Lee J; Jung SM; Shin JH; Song WJ; Rho M
    mSystems; 2021 Jun; 6(3):e0005321. PubMed ID: 34042468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Laboratory-Evolved Flavin-Dependent Halogenases Affords a Computational Model for Predicting Halogenase Site Selectivity.
    Andorfer MC; Evans D; Yang S; He CQ; Girlich AM; Vergara-Coll J; Sukumar N; Houk KN; Lewis JC
    Chem Catal; 2022 Oct; 2(10):2658-2674. PubMed ID: 36569427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific Enzymatic Halogenation-From the Discovery of Halogenated Enzymes to Their Applications In Vitro and In Vivo.
    Weichold V; Milbredt D; van Pée KH
    Angew Chem Int Ed Engl; 2016 May; 55(22):6374-89. PubMed ID: 27059664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional insights into the self-sufficient flavin-dependent halogenase.
    Dai L; Li H; Dai S; Zhang Q; Zheng H; Hu Y; Guo RT; Chen CC
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129312. PubMed ID: 38216020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.