These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28879681)

  • 21. A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase.
    Shepherd SA; Menon BR; Fisk H; Struck AW; Levy C; Leys D; Micklefield J
    Chembiochem; 2016 May; 17(9):821-4. PubMed ID: 26840773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissecting the low catalytic capability of flavin-dependent halogenases.
    Phintha A; Prakinee K; Jaruwat A; Lawan N; Visitsatthawong S; Kantiwiriyawanitch C; Songsungthong W; Trisrivirat D; Chenprakhon P; Mulholland A; van Pée KH; Chitnumsub P; Chaiyen P
    J Biol Chem; 2021; 296():100068. PubMed ID: 33465708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination.
    Neubauer PR; Widmann C; Wibberg D; Schröder L; Frese M; Kottke T; Kalinowski J; Niemann HH; Sewald N
    PLoS One; 2018; 13(5):e0196797. PubMed ID: 29746521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Halogenase engineering and its utility in medicinal chemistry.
    Fraley AE; Sherman DH
    Bioorg Med Chem Lett; 2018 Jun; 28(11):1992-1999. PubMed ID: 29731363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective C-H Halogenation of Alkenes and Alkynes Using Flavin-Dependent Halogenases.
    Jiang Y; Kim A; Olive C; Lewis JC
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202317860. PubMed ID: 38280216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enantioselective Desymmetrization of Methylenedianilines via Enzyme-Catalyzed Remote Halogenation.
    Payne JT; Butkovich PH; Gu Y; Kunze KN; Park HJ; Wang DS; Lewis JC
    J Am Chem Soc; 2018 Jan; 140(2):546-549. PubMed ID: 29294291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scope and potential of halogenases in biosynthetic applications.
    Smith DR; Grüschow S; Goss RJ
    Curr Opin Chem Biol; 2013 Apr; 17(2):276-83. PubMed ID: 23433955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flavin-dependent halogenases involved in secondary metabolism in bacteria.
    van Pée KH; Patallo EP
    Appl Microbiol Biotechnol; 2006 May; 70(6):631-41. PubMed ID: 16544142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NfoR: Chromate Reductase or Flavin Mononucleotide Reductase?
    O'Neill AG; Beaupre BA; Zheng Y; Liu D; Moran GR
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Free flavins accelerate release of ferrous iron from iron storage proteins by both free flavin-dependent and -independent ferric reductases in Escherichia coli.
    Satoh J; Kimata S; Nakamoto S; Ishii T; Tanaka E; Yumoto S; Takeda K; Yoshimura E; Kanesaki Y; Ishige T; Tanaka K; Abe A; Kawasaki S; Niimura Y
    J Gen Appl Microbiol; 2020 Jan; 65(6):308-315. PubMed ID: 31281172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LuxG is a functioning flavin reductase for bacterial luminescence.
    Nijvipakul S; Wongratana J; Suadee C; Entsch B; Ballou DP; Chaiyen P
    J Bacteriol; 2008 Mar; 190(5):1531-8. PubMed ID: 18156264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eukaryotic integral membrane protein expression utilizing the Escherichia coli glycerol-conducting channel protein (GlpF).
    Neophytou I; Harvey R; Lawrence J; Marsh P; Panaretou B; Barlow D
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):375-81. PubMed ID: 17828601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanding the Reactivity of Flavin Dependent Halogenases Toward Olefins via Enantioselective Intramolecular Haloetherification and Chemoenzymatic Oxidative Rearrangements.
    Jiang Y; Mondal D; Lewis JC
    ACS Catal; 2022 Nov; 12(21):13501-13505. PubMed ID: 37377844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-Selective C-H Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling.
    Fisher BF; Snodgrass HM; Jones KA; Andorfer MC; Lewis JC
    ACS Cent Sci; 2019 Nov; 5(11):1844-1856. PubMed ID: 31807686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and Activity of the Thermophilic Tryptophan-6 Halogenase BorH.
    Lingkon K; Bellizzi JJ
    Chembiochem; 2020 Apr; 21(8):1121-1128. PubMed ID: 31692209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Promiscuous Halogenase for the Derivatization of Flavonoids.
    Kolling D; Stierhof M; Lasch C; Myronovskyi M; Luzhetskyy A
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Lichen Flavin-Dependent Halogenase, DnHal: Identification, Heterologous Expression and Functional Characterization.
    Hasan NS; Ling JG; Bakar MFA; Seman WMKW; Murad AMA; Bakar FDA; Khalid RM
    Appl Biochem Biotechnol; 2023 Nov; 195(11):6708-6736. PubMed ID: 36913095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding Flavin-Dependent Halogenase Reactivity via Substrate Activity Profiling.
    Andorfer MC; Grob JE; Hajdin CE; Chael JR; Siuti P; Lilly J; Tan KL; Lewis JC
    ACS Catal; 2017 Mar; 7(3):1897-1904. PubMed ID: 28989809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.