BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28879961)

  • 1. Microstructural and Process Characterization of Conductive Traces Printed from Ag Particulate Inks.
    Roberson DA; Wicker RB; Murr LE; Church K; MacDonald E
    Materials (Basel); 2011 May; 4(6):963-979. PubMed ID: 28879961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes.
    Fernandes IJ; Aroche AF; Schuck A; Lamberty P; Peter CR; Hasenkamp W; Rocha TLAC
    Sci Rep; 2020 Jun; 10(1):8878. PubMed ID: 32483302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size.
    Mavuri A; Mayes AG; Alexander MS
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.
    Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A
    Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.
    Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Preparation of Ag Nanoparticle and Ink Used for Inkjet Printing of Paper Based Conductive Patterns.
    Cao L; Bai X; Lin Z; Zhang P; Deng S; Du X; Li W
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28846637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Inkjet-Printed Silver Films Based on Nanoparticles and Metal-Organic Decomposition Inks with Different Curing Methods.
    Xiao P; Zhou Y; Gan L; Pan Z; Chen J; Luo D; Yao R; Chen J; Liang H; Ning H
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32664692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications.
    Karim N; Afroj S; Tan S; Novoselov KS; Yeates SG
    Sci Rep; 2019 May; 9(1):8035. PubMed ID: 31142768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver Ink Formulations for Sinter-free Printing of Conductive Films.
    Black K; Singh J; Mehta D; Sung S; Sutcliffe CJ; Chalker PR
    Sci Rep; 2016 Feb; 6():20814. PubMed ID: 26857286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films.
    Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K
    Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Conductive Ink Capable of In Situ and Rapid Synthesis of Conductive Patterns Suitable for Inkjet Printing.
    Wang Y; Du D; Zhou Z; Xie H; Li J; Zhao Y
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31574997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-printed multiplexed electrocatalytic biosensors with rationally designed nanoparticle inks.
    Li X; Yang M; Rao A; Su Y; Yang T; Ye Y; Wang J; Pan S; Chen F; Wang B; Luo Z
    Nanotechnology; 2023 May; 34(32):. PubMed ID: 37156233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave Sintering of Silver Nanoink for Radio Frequency Applications.
    Kim KS; Park BG; Jung KH; Kim JW; Jeong MY; Jung SB
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2333-7. PubMed ID: 26413662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Investigation of Novel, Controlled Low-Temperature Sintering Processes for Inkjet Printed Silver Nanoparticle Ink.
    Chen Z; Gengenbach U; Koker L; Huang L; Mach TP; Reichert KM; Thelen R; Ungerer M
    Small; 2024 May; 20(21):e2306865. PubMed ID: 38126669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ohmic contact formation for inkjet-printed nanoparticle copper inks on highly doped GaAs.
    Hayati-Roodbari N; Wheeldon A; Hendler C; Fian A; Trattnig R
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33621957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.
    Kell AJ; Paquet C; Mozenson O; Djavani-Tabrizi I; Deore B; Liu X; Lopinski GP; James R; Hettak K; Shaker J; Momciu A; Ferrigno J; Ferrand O; Hu JX; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2017 May; 9(20):17226-17237. PubMed ID: 28466636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.
    Ding J; Liu J; Tian Q; Wu Z; Yao W; Dai Z; Liu L; Wu W
    Nanoscale Res Lett; 2016 Dec; 11(1):412. PubMed ID: 27644238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.