These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 28880003)
1. Dual-Scale Polymeric Constructs as Scaffolds for Tissue Engineering. Mota C; Puppi D; Dinucci D; Errico C; Bártolo P; Chiellini F Materials (Basel); 2011 Mar; 4(3):527-542. PubMed ID: 28880003 [TBL] [Abstract][Full Text] [Related]
2. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245 [TBL] [Abstract][Full Text] [Related]
3. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering. Li M; Liu W; Sun J; Xianyu Y; Wang J; Zhang W; Zheng W; Huang D; Di S; Long YZ; Jiang X ACS Appl Mater Interfaces; 2013 Jul; 5(13):5921-6. PubMed ID: 23790233 [TBL] [Abstract][Full Text] [Related]
4. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Brown TD; Edin F; Detta N; Skelton AD; Hutmacher DW; Dalton PD Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():698-708. PubMed ID: 25491879 [TBL] [Abstract][Full Text] [Related]
5. Human Amniotic Membrane with Aligned Electrospun Fiber as Scaffold for Aligned Tissue Regeneration. Hasmad H; Yusof MR; Mohd Razi ZR; Hj Idrus RB; Chowdhury SR Tissue Eng Part C Methods; 2018 Jun; 24(6):368-378. PubMed ID: 29690856 [TBL] [Abstract][Full Text] [Related]
6. Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) Blend Scaffolds for Tissue Engineering. Puppi D; Morelli A; Chiellini F Bioengineering (Basel); 2017 May; 4(2):. PubMed ID: 28952527 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres. Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152 [TBL] [Abstract][Full Text] [Related]
9. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration. Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483 [TBL] [Abstract][Full Text] [Related]
10. Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Balguid A; Mol A; van Marion MH; Bank RA; Bouten CV; Baaijens FP Tissue Eng Part A; 2009 Feb; 15(2):437-44. PubMed ID: 18694294 [TBL] [Abstract][Full Text] [Related]
11. Investigation of Cell Adhesion and Cell Viability of the Endothelial and Fibroblast Cells on Electrospun PCL, PLGA and Coaxial Scaffolds for Production of Tissue Engineered Blood Vessel. Bazgir M; Saeinasab M; Zhang W; Zhang X; Min Tsui K; Maasoumi Sarvestani A; Nawaz S; Coates P; Youseffi M; Elies J; Sefat F J Funct Biomater; 2022 Dec; 13(4):. PubMed ID: 36547542 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
13. Influence of highly porous electrospun PLGA/PCL/nHA fibrous scaffolds on the differentiation of tooth bud cells in vitro. Cai X; Ten Hoopen S; Zhang W; Yi C; Yang W; Yang F; Jansen JA; Walboomers XF; Yelick PC J Biomed Mater Res A; 2017 Sep; 105(9):2597-2607. PubMed ID: 28544201 [TBL] [Abstract][Full Text] [Related]
14. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
16. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering. Nguyen TH; Bao TQ; Park I; Lee BT J Biomater Appl; 2013 Nov; 28(4):514-28. PubMed ID: 23075833 [TBL] [Abstract][Full Text] [Related]
17. Improving myoblast differentiation on electrospun poly(ε-caprolactone) scaffolds. Abarzúa-Illanes PN; Padilla C; Ramos A; Isaacs M; Ramos-Grez J; Olguín HC; Valenzuela LM J Biomed Mater Res A; 2017 Aug; 105(8):2241-2251. PubMed ID: 28426898 [TBL] [Abstract][Full Text] [Related]
18. A synthetic bridging patch of modified co-electrospun dual nano-scaffolds for massive rotator cuff tear. Sun Y; Han F; Zhang P; Zhi Y; Yang J; Yao X; Wang H; Lin C; Wen X; Chen J; Zhao P J Mater Chem B; 2016 Dec; 4(45):7259-7269. PubMed ID: 32263728 [TBL] [Abstract][Full Text] [Related]
19. Development of electrospun three-arm star poly(ε-caprolactone) meshes for tissue engineering applications. Puppi D; Detta N; Piras AM; Chiellini F; Clarke DA; Reilly GC; Chiellini E Macromol Biosci; 2010 Aug; 10(8):887-97. PubMed ID: 20376838 [TBL] [Abstract][Full Text] [Related]
20. Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Dalgic AD; Atila D; Karatas A; Tezcaner A; Keskin D Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():735-746. PubMed ID: 30948111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]