BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28880007)

  • 1. Using Converter Dust to Produce Low Cost Cementitious Composites by in situ Carbon Nanotube and Nanofiber Synthesis.
    Ludvig P; Calixto JM; Ladeira LO; Gaspar ICP
    Materials (Basel); 2011 Mar; 4(3):575-584. PubMed ID: 28880007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Industrial Waste Utilization of Carbon Dust in Sustainable Cementitious Composites Production.
    Irshidat MR; Al-Nuaimi N
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Mechanical and Durability Properties of Cement Mortar by Using Alumina Nanocoating on Carbon Nanofibers.
    Al Qader H; Jasim AM; Salim H; Xing Y; Stalla D
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Carbon Nanotube Incorporation in Cementitious Composite Materials.
    Evangelista ACJ; de Morais JF; Tam V; Soomro M; Torres Di Gregorio L; Haddad AN
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31072039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Carbon Nanotubes on Phase Composition, Thermal and Post-Heating Behavior of Cementitious Composites.
    Irshidat MR; Al-Nuaimi N; Rabie M
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33561992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification Effects of Carbon Nanotube Dispersion on the Mechanical Properties, Pore Structure, and Microstructure of Cement Mortar.
    Hu S; Xu Y; Wang J; Zhang P; Guo J
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32121629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Study of Iron-Tailings-Based Cementitious Mortars with Incorporated Graphite Ore and Graphite Tailings: Strength Properties and Microstructure.
    Zhang J; Wei Q; Zhang N; Zhang S; Zhang Y
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A First Assessment of Carbon Nanotubes Grown on Oil-Well Cement via Chemical Vapor Deposition.
    Lavagna L; Bartoli M; Musso S; Suarez-Riera D; Tagliaferro A; Pavese M
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Performance of Portland Cement, Coarse Silica Fume, and Limestone (PC-SF-LS) Ternary Portland Cements.
    Sanjuán MÁ; Menéndez E; Recino H
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Dispersing Carbon Nanotube in Aqueous Solution by Poly-Carboxylic-Based Surfactants on Mechanical and Microstructural Properties as Cementitious Composites.
    Kim WW; Moon JH; Lee ST
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Titanium Nanotube Reinforced Cementitious Composites: Mechanical Properties, Microstructure, and Hydration.
    Jee H; Park J; Zalnezhad E; Jeong K; Woo SM; Seok S; Bae S
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31100956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart Cementitious Sensors with Nano-, Micro-, and Hybrid-Modified Reinforcement: Mechanical and Electrical Properties.
    Thomoglou AK; Falara MG; Gkountakou FI; Elenas A; Chalioris CE
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Investigation of Hybrid Carbon Nanotubes and Graphite Nanoplatelets on Rheology, Shrinkage, Mechanical, and Microstructure of SCCM.
    Farooq F; Akbar A; Khushnood RA; Muhammad WLB; Rehman SKU; Javed MF
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31948005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pozzolanic Reactivity of Silica Fume and Ground Rice Husk Ash as Reactive Silica in a Cementitious System: A Comparative Study.
    Xu W; Lo TY; Wang W; Ouyang D; Wang P; Xing F
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Polypropylene Microfibers in Thermal Properties and Post-Heating Behavior of Cementitious Composites.
    Irshidat MR; Al-Nuaimi N; Rabie M
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effects of CNTs/SiO
    Li S; Shen P; Zhou H; Du S; Zhang Y; Yan J
    RSC Adv; 2022 Sep; 12(42):27253-27266. PubMed ID: 36276023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion Behavior of AISI 1018 Carbon Steel in Localized Repairs of Mortars with Alkaline Cements and Engineered Cementitious Composites.
    Maldonado-Bandala E; Higueredo-Moctezuma N; Nieves-Mendoza D; Gaona-Tiburcio C; Zambrano-Robledo P; Hernández-Martínez H; Almeraya-Calderón F
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32726900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Overview of the Performance of Cementitious and Non-Cementitious Nanomaterials in Mortar at Normal and Elevated Temperatures.
    Khan MA; Imam MK; Irshad K; Ali HM; Hasan MA; Islam S
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Multi-Scale Carbon Nanofiber and Nanotube-Based Cementitious Composites for Reliable Sensing of Tensile Stresses.
    Parveen S; Vilela B; Lagido O; Rana S; Fangueiro R
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Rock Dust Additives as Fine Aggregate Replacement on Properties of Cement Composites-A Review.
    Dobiszewska M; Bagcal O; Beycioğlu A; Goulias D; Köksal F; Niedostatkiewicz M; Ürünveren H
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.